geodiversitas fait suite,
avec la même tomaison, au Bulletin du
Muséum national d'Histoire naturelle,
4® série, section C, Sciences de la Terre.
Directeur de la publication :
J.-C. Moreno, Administrateur provisoire du
Muséum national d’Histoire naturelle
Rédacteur en chef :
Hervé Lelièvre
Conseil éditorial ;
Annemarie Ohler (Nomenclature)
Assistante de rédaction :
Florence Kerdoncuff
Corrections-relecture :
Hélène Bertini
Comité scientifique :
Jean Broutin (UPMC, Paris)
Bruno David (CNRS, Dijon)
Jean-François Deconinck (USTL, Lille)
Patrick De Wever (MNHN, Paris)
Jean Marcoux (U. Denis Diderot, Paris)
Christian Ravenne (IFP, Paris)
geodiversitas est un trimestriel publié par les Publications Scientifiques du Muséum, Paris
geodiversitas is a quarterly published by Publications Scientifiques du Muséum. Paris
http://www.mnhn.fr/publication/
Abonnement pour l’année 1999 (prix HT)
Annual subscription rates 1999 (excluding VAT)
1000 FF (152,45 euros)
Geodiversitas peut être obtenu par voie d’échange. Pour toutes informations s’adresser à ;
Geodiversitas may be obtained on an exchange basis. For further information please write to:
Service des périodiques et des échanges de la Bibliothèque centrale
du Muséum national d’Histoire naturelle
38 rue Geoffroy Saint-Hilaire
75005 Paris
Tél. : (33) (0)1 40 79 36 41
Fax: (33) (0)1 40 79 36 56
Les Publications Scientifiques du Muséum publient aussi :
The Publications Scientifiques du Muséum aiso pubiish:
adansonia
Abonnement / Subscription : 500 FF (76,22 euros)
zoosystema
Abonnement / Subscription : 1000 FF (152.45 euros)
Abonnement général / General subscription (adansonia -i- geodiversitas + zoosystema) : 1800 FF (274 euros)
geodiversitas
InterRad VIN, Paris/Bierville 8-13 septembre 1997
Publications Scientifiques du Muséum, Paris
© Publications Scientifiques du Muséum
Photocopies :
Les Publications Scientifiques du Muséum adhèrent au Centre
Français d’Exploitation du Droit de Copie (CFC), 20 rue des
Grands Augustins, 75006 Paris. Le CFC est membre de
XInternational Fédération of Reproduction Rights Organisations
(IFRRO). Aux États-Unis d’Amérique, contacter le Copyright
Clearance Center, 27 Congress Street, Salem, Massachusetts 01970.
national d’Histoire naturelle, Paris, 1999
Photocopies:
The Scientific Publications of the Muséum adhéré to the Centre
Français d'Exploitation du Droit de Copie (CFC), 20 rue des Grands
Augustins, 75006 Paris. The CFC is a member of International
Fédération of Reproduction Rights Organisations (IFRRO).
In USA, contact the Copyright Clearance Center, 27 Congress Street,
Salem, Massachusetts 01970.
Introduction
The first meeting of radiolarian micropaleonto-
logists was organi/.ed in 1978 by R De Wever
(Lille, France). Most participants being from
European universities, the name o( “EuroRad”
was coined to designatc this meeting and the fol-
lowing ones. EuroRad II was held in 1980
(Basel, Swilzerland), EuroRad Ilî in 1982
(Bergen, Norway), and EuroRad IV in 1984
(Leningrad, USSR). More and more radiolarists
from ail continents joining the EuroRad group, a
formai international association ol radiolarian
micropaleontologists was created and its First
meeting (InterRad V) was held in 1988 at
Marburg (Gcrmany) followcd by InterRad VI in
1991 (Firenze, Italy), and Interrad VII in 1994
(Osaka, Japan).
The last InterRad VIII meeting (almost twenty
years after Eurorad I) was held Iront September
8th to 13th (1997) at the Château de Bicrville, a
meeting centre locaied 50 kilometers South of
Paris (France). 85 participants from 17 councries
attended 8 workshops and presented 144 oral
communications or posters. The abstracts of the
communications were published in a spécial
volume before the meeting, and furrher distribu-
ted to a total of 200 scientists. A one day spécial
excursion was organized during InterRad VIII
including a wcll-apprcciated visit of a winery in
the Loire area including somc wine tasting, and a
visit of the Château de Chambord, a gorgeous
Renaissance castle.
During the meeting, 23 papers were offered for
publication in a spécial issue of Geodiversitas. A
grand total of 21 manuscripts were received by
the éditorial committee and submitted to a pair
review. Finally, 14 publications were selected and
are presented in this volume.
Two years after InterRad VIII, this spécial issue
ol Geodiversitas cannot reflect the wide scope of
the communications that encompassed ail the
geological record from Cambrian to Présent.
Original information Is, however, given about
significant advances in radiolarian biosrratigra-
phy of Mesozoie formations of the Aritartic and
Pacific domains. New taxonomie descriptions of
Paleozoic and Mesozoie forms arc presented. A
single paper is devoted to the radiolarians of the
Messinian diatomites of the Mediterranean area.
As usual, publication delay was longer rhan
expected due to scveral reasons: some authors
were lare submitting their manuscript, some
reviewers took a lengthy time to review manus¬
cripts and answer successive requests from the
editor. Modifications requested by reviewers took
some extra time to bc completed.
Support from the CNRS, the Muséum national
d’Hisioire naturelle, the Ministère des Affaires
étrangères and the Total Company is gratefully
acknowledged.
Patrick De Wever and Jean-Pierre Caulet
GEODIVERSITAS • 1999 • 21 (4)
501
Non-Tethyan Triassic Radiolaria from
New Zealand and northeastern Siberia
Yoshiaki AITA
Department of Geology, Faculty of Agriculture, Utsunomiya University,
350 Mine, Utsunomiya 321-8505 (Japan)
aida@cc.utsunomiya-u.ac.jp
Nikita Yu. BRAGIN
Geological Institute, Russian Academy of Sciences,
Pyzhevsky 7, 109017 Moscow (Russie)
bragin@ginran.msk.su
Aita Y. & Bragin N. Yu. 1999. — Non-Tethyan Triassic Radiolaria from New Zealand and
northeastern Siberia, in De Wever P. & Caulet J.-P. (eds), InterRad VIN, Paris/Bierville 8-13
septembre 1997, Geodiversitas 2^ (4) : 503-526.
KEY WORDS
Radiolaria,
non-"l’ethyan,
Middic Triassic,
New Zealand,
Siberia,
new species,
Glomeropyle n. gen.
ABSTRACT
We!Upresei*vcd Middle Triassic radiolarian faunas hâve been documented
from phosphatic nodules collected from the Waipapa Terrane, New Zealand
and the Omolon Massif, northeastern Siberia, respectively. Both New
Zealand and northeastern Siberia faunas include many species that are well-
known from European Tethys area, including Silicarmtger costatus costatus
Dumitrica, Kozur & Mostler, 1980 which indicates an early Ladinian âge.
These Tethyan species occur with abondant non-Tethyan l adiolarians that
are characteristic of these faunas. Distinctive pylomate spumellarians are des-
cribed herein as a new genus Glomeropyle Kwa &c Bragin. This genus bas not
been recognized in Middle Triassic sequences of Europe, Japan, Southeast
Asia or North America. Seven new Middle Triassic species are described:
Glomeropyle atirora, Glomeropyle horeale, Glomeropyle poinuiy Glomeropyle (?)
galagalay Glomeropyle grantiruickiei, Glomeropyle mahinepunensis-, Glomeropyle
waipapaensis. They do not hâve Tethyan affinities and are only known from
northern and Southern high latitudes. They are Triassic Radiolaria with a
bipolar distribution pattern.
GEODIVERSITAS • 1999 • 21 (4)
503
Aica Y. & Bragin N. Yu.
MOTS CLÉS
radiolaires»
non-Téthys.
Trias moyen»
Nouvelle-Zclandc,
i)jbérie,
nouvelle espèce,
Glomeropyle n. gen.
RÉSUMÉ
Radiolaires triasi^ues non téthysiens de Nouvelle-Zélande et dti Nord-Est de la
Sibérie.
Des radiolaires bien conserves du Trias moyen ont été découverts dans des
nodules phosphatés provenant des formations Waipapa, en Nouvelle-
Zélande c( du massif Omolon, au Nord-I£st de la Sibérie. Les deux faunes
comprennent de nombreuses espèces bien connues en Europe de la zone
téthysienne, incluant Silinirmiger costatus costatus Dumitiica, Kozur &
Mosticr» 1980 qui indiquent un age Ladtnien inférieur. C'es espèces téthy-
siennes existent avec de nombreux radiolaires non-téchysiens, caractérisliques
de CCS fituries. Parmi eux des spumellaires i pylome sont décrits dont le nou¬
veau genre Glomeropyle Aira & Bragin. Ce genre n'avait pas encore été trouvé
dans les séries du Trias moyen d’Europe» du J.apon, d'Asie du .Sud-Est et
d’Amérique du Nord. Sept nouvelles espèce.s du Trias moyen sont décrites :
Glomeropyle aitrora, G. horcaU\ G. poinw^ G. (?) galagitLu G. g>’ant7?iackieK
G. intthiriepuaensis-i G. ivaipapuensis. Elles n’ont pas d’afFinités téthysiennes et
sont seulement connues dans les hautes latitudes (Nord et Sud). Ces faunes
triasiques ont donc une distribution bipolaire.
INTRODUenON
In récent year.s radiolarians bave provided
valuable information on the âge of previously
undated strata» improvements to corrélation both
within terranes and between terranes, and in the
assessrnenr of paleobiogcographic aiTinities (Aita
bc Spbrü 1992» 1994). Recendy, distinctive non-
Tethyan rudiolarian faimas bave been fbund in
Middle Triassic strata in both New Zealand and
northeastern Siberia (Fig. 1), (Aiia in MaLsuoka
et ai 1996: 204-206; Bragin in Matsuoka et al.
Fig. 1. — Paleogeographic map of the Middle Triassic (Ladinian-Anisian) at 237 million years ago (Ma), showing localities cited in
this study in New Zealand, northeastern Siberia and northern Italy (modified from Scotese 1997; Smith étal. 1994).
504
GEODIVERSITAS • 1999 • 21 (4)
Non-Tethyan Triassic Radiolaria from New Zealand and Siberia
1996: 209). Alrhou^i gcographically distant, the
fimnas of büth areas art* very similar and almost of
corrélative âge. They both include distinctive spu-
meJlarians wirh pylome. These taxa hâve never
bccn reported from Tethyan areas (Dumitrica et
al 1980; Ko 2 ur ô£ Mostler 1994; Kozur ei al.
1996; Dumitrica pets, comm.), Japan (Yao 1982;
Sugiyama 1997; Ohtaka et al. 1998). or the
Philippines (Yeh 1990). In this paper, we describe
and illastratc these high-latitude ta.xa^ including
one new gcniis and seven new species. In addi¬
tion, we briefly summarizc the lichostratigraphy
of the radiolarian-beanng séquences in New
Zealand and in northeastern Siberia.
TRIASSIC RADIOLARIA IN WAIPAPA AND
CAPLES TERRANES, NEW ZEALAND
Waipapa 'I’errane, Mahinepua Peninsula,
Northiano
The Waipapa Terrane is one of rive Meso/oic ter-
rancs recogni/ed in the North Island, New
Zealand (l'ig. 2). It lies in the northeastern and
central part of the North Island and consists of
spihtic basalts, radiolarian cherts, green argillites,
and terrigenous clastics (Aifa & Sporli 1992).
Although these rocks are metamorphosed to
Fig. 2, — Map showing basement terranes of New Zealand and
location of Whangaroa area (squared area) In the Waipapa
Terrane, modified from Aita & Spôrü (1992) and Poser et al.
(1993). *, Bull Creek in the Caples Terrane.
N
Whangaroa Bay
Arrow Rocks
Whangaihe Bay
xjÿfxp
Pacific Océan
Mahinepua Section
Kairawaru
Mahinepua Bay
Tauranga Bay
massive sandstone
green siliceous argillite
bedded chert
spilitic basait with limestone |
Xp,xt fossil locality
P: Permian, T: Triassic
0 500 1000m
Fig. 3. — Geological map of the Whangaroa area, Northland, New Zealand and location of the Mahinepua Section (squared area) in
the Waipapa Terrane. and fossil localities. Xp, Permian âge; Xt, Triassic âge.
GEODIVERSITAS • 1999 • 21 (4)
505
Aita Y. & Bragin N. Yu.
Green argillite & siliceous sandstone
with phosphatic concrétions _
Green argillite
radiolarian-bearing
samples
Grey chert & black siliceous argillite
Fig. 4. — Geoiogical sketch map showing wave-cut bench exposures on Mahinepua Peninsula, Northland, New Zealand. Five strati¬
graphie units are recognized. Measured sections from A lo K and location of radiolarian samples are indicated. Sample PO4/f103 (=
fleld No. MAH-3.5); Grid reference P04/88618928. Whangaroa sheet P04. New Zealand 1:50.000 topographical map sériés NZMS
260.
prehnilc-pumpcilyite faciès (Black 1994), phos¬
phatic concrétions hosted wichin green argillite
hâve yi'cldcd well'prescrvcd radiolarian faiinas
(Sakai et al. 1998).
In general, the âges ol the radiolarian faunas in
the Waipapa Icrrane show that an older
Permian-Triassic complex occurs in the north
and a youngen Jriassic-Jura.ssic complex is in the
South (Aita & Sporli 1992; Sporli et ni 1989; sce
also Black 1997). Borh complexes consist ol very
similar lithologie scqucnccs charactcrizcd by
radiolarian chert. green argillite and terrigenous
mudstotîc and sandstone although the older
complex also has some spiliric basait with asso-
ciated limestonc Icnses.
In the Whangaroa area, located in the northern
part oi the Waipapa Terrane, the older Waipapa
rocks are well exposed in sections at Arrow
Rocks, Marble Bay, Orua Bay, Kairawaru Bay,
and Mahinepua Peninsula (Fig. 3).
Beddcd cherts in tins area arc of Late Permian âge
(Aita & Sporli 1992) whilc Latc Triasslc radiola-
rians from phosphatic concrétions within green
argillire at Mahinepua hâve been repcirted by Aita
in Matsuoka et tti (1996), Detailed investigations
of the Waipapa Terrane h\' a Japanese and New
Zealand collaborative research projcct in 1995
and 1996 revcaled that the hemipelagic green
argillite at Mahinepua ranges from Middie to
Late Tria.s.sic in âge (Takernura et ni 1998),
A rc-cxaniiivation of the Permian fusulinid liines-
tones from Orua Bay by Leven ôc Grant-Maclde
(1997) re.sulted in the identification of Yttheina
globosa (Yabe, 1906) and Leptdolîna shimiwaensis
O/.awa, 1925, and establishcd corrélation with
the Yabeinn-Lepidolina zone of the Midian Stage.
Leven & Grant-Mackie (1997) attribuie the
Midian to the Late Permian, but fbllowing Jin et
506
GEODIVERSITAS • 1&99 • 21 (4)
Non-Tethyan Triassic Radiolaria from New Zealand and Siberia
m
40'
39H
38
37-
36-
35-
34-
33-
32-
31
30
29
28
27
26
25
24
23
22
21
20
ibH
17
16 i
16
14
13
12-1
11
^ Stratigraphie Columns of Mahinepua Section
Bluish grey mudstone
with turbldites
8
7
6
5
4
3
2
1
0
-1
yc6
H76
h75
h74
T-C-2
MAH-63-
'73
71.72
vhite tuff layer
» brown chéri
%in white laye^
I cherty bed
3^
Unit 4
•Fault
• Fault
brownish tuff
-D-5
white tuff layer
Unit 3
I Green argillite and siliceous
thin bedded unit sandstone with
^ phosphatic concrétions
^8-3
cherty bed
MAH-5.15
Green argillite
Unit 2
Ff103(=MAH-3.5) 9^®®" ^''9'*''^® with
phosphatic concrétions
^MAH-1.0
m
A, B,C
grey chert and black
siliceous argillite
Unit 1
Fig. 5. — Stratigraphie columns in the Mahinepua Section, Waipapa Terrane, New Zealand. Composite columns show lithologie
composition of four units and horizons of radiolarlan-bearing samples.
al. (1997), the Midian îs correlated with the Late
Middle Permian Capitanian Stage. More recent-
ly, the lithostratigraphy and radiolarian biostrati-
graphy of the Late Permian to Middle Triassic
succession at Arrow Rocks has been described
(Takemura étal. 1998, 1999 in this volume).
GEODIVERSITAS • 1999 • 21 (4)
507
Aita Y. & Bragin N. Yu.
Table 1 . — Radiolarian faunal list for Mahinepua, Bull Creek (New Zealand) and Dzugadzak River (Northeast Siberia) and occurren¬
ce of radiolarians from Buchenstein Limestone, Recoaro (Northern Italy).
NEW
NEW
NE SIBERIA
N ITALY
ZEALAND
ZEALAND
Waipapa
Caples
Omolon
Vicentinian
Terrane
Terrane
Massiv
Alps
Locality
Mahinepua
Bull Creek
Dzugadzak
Recoaro
River
Sample or Unit
PO4/t103
H45f074
7438-89-1
Buchenstein
Field No.
MAH-3.5
YABC-26
Unit 10
Limestone
Spongopallium confortum Dumitrica, Kozur & Mostler
X
X
Spongopaltium aff- kappi (Lahm)
X
X
Spongopallium sp.
X
X
X
Cryptosîephanidium iongispinosum (Sashida)
X
X
Hindeosphaera sp.
X
X
Pseudostylosphaera sp.
X
X
Eptingium sp.
X
X
Kahlerosphaera sp.
X
X
Plafkerium (?) sp.
X
X
Stauracontium (?) sp.
X
X
Archaeosemantis sp.
X
X
X
Parentactinia inerme Dumitrica
X
X
X
X
Parentaotinia pugnax Dumitrica
X
X
X
X
Pentactinorbis mostieri Dumitrica
X
X
Pentactinorbis sp.
X
X
Glomeropyte nurora Aita. n. sp.
X
Glomeropyle boreale Bragin, n. sp.
X
X
Glomeropyte poinui Aita. n. sp.
X
Gfomeropyl9 ('') gaiagala Aita, n. sp.
X
X
Glomerupytë giantmacKitii Aïia, n. sp.
X
X
Glomeropyle mahhepuaensis Ma, n. sp.
X
Glomeropyle waipapaensis AWa, n. sp.
X
Silicarmiger cosiaîus costatus Dumitrica,
Kozur & Mostler
X
X
X
X
Silicarmiger ci. laïus Kozur & Mostler
Silicarmiger sp.
X
X
Foremanellina aranea Dumitrica
X
X
Foremanellina expansotabrum Dumitrica
X
X
Foremaneliina sp.
X
X
Recoaroella sp.
X
X
Triassospongocyrîis sp.
X
X
Hozmadiaci retreu/ata Dumitrica. Kozur & Mostler
X
X
Hozmadia sp.
X
X
X
X
Goestlingella sp.
X
X
Pouipus sp.
X
X
X
Pachus (?) sp.
X
Laxtorum (?) sp.
X
X
Simple multicyrtoids
X
X
MAHfNFPiiA Section
Mahinepua section is located on the northern
side of Mahinepua Peninsula (Fig. 3), east of the
Whangaroa area, North Island, New Zealand.
The fossil locality is PO4/fl03 (= field
No. MAH-3.5), grid référencé P04/886892 in
the archivai New Zealand Fossil Record File
maintained by the Gcological Society of New
Zealand, i.e. locality No, 1103 in map sheet P04
of the 1:50,000 sériés NZMS260. It lies in the
lower part of Unit 2 (Fig. 4).
The complété section consists of red bedded
508
GEODIVERSITAS • 1999 • 21 (4)
Non-Tethyan Triassic Radiolaria from New Zealand and Siberia
chère (20 m thick). green siliceoüs argillite
(25.5 m), bluish grey mudstone with turbidites
(30 m), and massive sandstone (> 100 m) in
ascending order (Figs 4, 5). This is a typical
“chert-green argillite-clascics” sequence which is
considered tt? rcpicscnc a suaiigraphically conti¬
nuons accrctionary scqucnce From pelagic (bed-
ded chert) and hcmipclagic (green argüiire) faciès
to terrigenous Faciès (b!ue-grey nmdstone and
massive sandstone). Black phosphatic concré¬
tions from many horizons vvithin the green argil¬
lite yielded diverse, well-prcserved radiolarian
faunas of Middlc co Late Triassic âge.
The Mahinepua Section is subdivided into five
unies as follows (Figs 4, 5):
Unit 1. Grey chert and black siliceoüs argillite ..
. 5 m.
Unit 2. Green argillite with lenticular phosphatic
bands . 10 m.
Unit 3- Well bedded green argillite and siliceoüs
sandstone with phosphatic concrétions and inter-
calated thin white tuff. 15 m.
The lower 4 m is thïn bedded.
Unît 4. Bluish grey mudstone with turbidites ....
.30 m.
Many turbidites layers of 10-20 cm thickness are
intercalated with mudstones.
Unit 5- Massive sandstone . 100 m.
The radiolarian fauna in the basal part ol Unît 2
includes Pseridostylosphaera spinuJosa (Nakascko
& Nishimura, 1979), Glomeropyle atirora n. sp.,
Hozrnadiû aff. pyntmidulis Gorican, 1990 in
Gorican Ruser, 1990. Sample fl 03 (= field
No. MAH-3.5) is a black phosphatic concrétion
taken from 3.5 m above the base of tlils unît and
contains well-preserved Middle Triassic radiola-
rians. The launa îs doniinated by abundant
Spumellaria including Spongopallium contortnni
Dumitricaï Koyur & Mostler, I9S0, Plafkcriurn
(?) sp., Eprinpum (?) sp.» Parcinactinia inerme
Dumirrica, P. pugnax Dumitrica, 1978,
Pentactinorbls mosderi Dumitrica, 1978, and
Cryptostephanidiuni longispinosum (Sashida,
1991). In addition, Glomeropyle aurora n. sp.,
G. poinui n. sp., G. (?) galagala n. sp., G. grant-
stage
Unit
Lllhology
Carnian
jgBggggjjgg
k1
I
Ladinian
1
Anisian
B
m
Olenakian
0t1
injmj
Induan
D
C
3
ES3
mudslone sritstone
limestone phosphatic
concrétions
Fig. 6. — Géographie location (A. B) and stratigraphie column
(C) For the Triassic section at Zhilny Creek. left bank, of
Dzugadzak River (Oniulon Mae»if noftheaslern Sibeda).
Location map D showmg the sludied section (squared area.
Fig. 7). Synibote ûit IhH luit aide ot me stratigraphie column are;
(1) stngo and substage: 1?, probably Induan, ol1.
Olenekinn: ol2. late Olcnekian; a2. middle Antsian; «3. iat«
Anisian, (2. laie Lariinien. kl. esrly Carnidn: k2?. probably
middle Carnian; (2| numbejr of stratigraphie unii as deactibed
herein.
mackiei n. sp., G. mahineptiaensis n. sp. and
6’ waipapaensis n. sp. are présent. The nassella-
rians include Silicarmiger costatus costatus
Dumitrica, Kozur & Mostler, Foremanellina ara-
nea Dumitrica, 1982, Hùzmadia cl. reticulata
Dumitrica, Kozur 6l Mostler, 1980, Hozmadici
aff. pyramidalis Gorican and an lindescribed
form oF PoitlpKS, This assemblage is con.sidered tp
be oF early Ladinian âge.
The first appcarance ol Capnmhùsphaerti inclu¬
ding C, colernani Blome, 1983, is recorded iii the
middlc part of Unit 3. Nunierous undescribed
spumellarians bclonging lo the gênera CapnU'-
chosphitera De Wever, 1979, Dumitricasphacru
Koziu & Mostler, 1979, KarfwspongclLi Kozur ik.
Mo.silcr. 1981, Pantatidlmn) IVssagno, 1977,
Siirki Fessagno, 1979, Wclirdla Dumitrica, Kozur
& Mostler, 1980. Xenorurn Blome, 1984 are al-so
présent in this unir, and a Late l'riassic age is
inferred.
GEODIVERSITAS • 1999 • 21 (4)
509
Aita Y. & Bragin N. Yu.
Quaternary alluvial deposits
Cretaceous dolerite dykes
Cretaceous granitoids
Late Triassic (Norian)
sandstone and slltstone
Middie to Late Triassic
(Anlsian-Carnian)
mudslone and siitslone
Early Tnassic
limestone and
mudslone
Late Permtan
li'mestone and siitslone
Devonian granitoids
Oevonian basic
volcanics and tuffs
Ai'Chaean melamorphic
basement
Geological boundaries
a; stratigraphie
b; faulls
Triassic section
Fig. 7. — Geological map of the study area, left bank of Dzugadzak River.
CaPLES TPUIUNE, RlH-I CKIU'K, O i ago
An additional fo.ssil locality, FÎ45/r074 (= field
No. YABC-26; grld rctcrcnce H45/884437) lies
500-600 m South ot ihe mouth ol Bull Creek on
the Otago coast, southeast ot Milton, South
Island, New Zcaland,
The localiiy i.s wiihin Caples Terrane (Fig. 2).
Some workers consider the Caples Tt rrane to be
the Southern extension ol the Waipapa Terrane
bascd on spatial relations and tectonic recons¬
tructions pf basement terranes fSporli 1978).
Radiolarians of Triassic and possible Middle-Late
Jurassic âges kave been reported froin the
“Chrystalls Beach Coinplex'' along this section oi
the Ôtago Coast (l lada et al. 1988). DetaÜcd
examination (by Y, Aita) of radiolarians from
phosphatic nodules in argillitc Iront the Tuapeka
Group exposed at Bull Creek hâve established
that the faunas are of Middie Triassic âge and
thar there are no Jurassic faunas. The Tuapeka
Group rocks are best exposed on the South
Otago coast between Chrystalls Beach and Taieri
Mouth and are characterised by non-schistose
sandstone and argillite wich minor chert and
phosphatic concrétions. et al (19*13), from
trace eicment analysis, showed rhat the ea.stcrn
lliapeka Group rocks on the (3tago coast display
active continental margin lelsic provenance,
contain more of Forlesse-like sandstones and less
mafic sandstone. On the other hand> Adams &
Graham (1997) analysed Rb-Sr whole-rock 5o-
chrons and K-Ar whok rock âges of metagrey-
waeke seqiiences in the Torlesse and Caples
Terranes. According to rheir data, Bull Creek
satnples h.ive an initial isotopic ratio of
0.70568 snggesîing a provenance of “uncertain”
terrane aifmity corresponding to the “Waipapa-
type” zone, but different Irom truc Caples and
Torlesse-type zones fAdams & Graham 1997).
"(Tus geochronological and géologie data from
Bull Creek samplcs show a similarity between
Caples and Waipapa Terrane rocks.
RADJOLARLAN CORRELATION AND FAUNAI. AFFINITY
The radiolarian fauna from the basal part of the
Mahinepua Section, Waipapa Terrane, is remar-
510
GEODIVERSITAS * 1999 • 21 (4)
Non-Tethyan Triassîc Radiolaria from New Zealand and Siberia
kably similar to rhe early Ladinian assemblages
from Bull Crcek. Early Ladiniân species in corn-
mon to both Mahinepua and Bull Creek faunas
includc Silicarnüger costatm costatus Duinitrica,
KozLir Mcisiler, htrentacikna inervie Dumi-
trica, /? pugnax Oumitrica, and Spougopallium
contorturn Dumitrica. Kozui & Mostlcr
(Table 1). Recent work by Black (1994) suggescs
that the rocks in the type area (Omahucâ-l’iiketi
in Southwest Northland) of the Waipapa Tcrranc.
arc different froni oihcr Waipapa rocks and may
bc a Norih Island extension or corrélative tïf the
Caples Terrane, Howcvcr» radiolarian fâunal
similantics suggcst that the northern Waipapa
Terrane has dose paleobiogcographic affiniiies
with the casternmost Caples Tcrranc.
In addition, both Mahinepua and Bull Creck
faunas contain many speciçs (labié 1) known
from the early Ladinian (Fassanian) part of the
Buchenstein Limestone fn the Southern Alps of
Europe (Dumitrica, Koziir & Mo.sricr 1 9H();
Gorican & Buscr 1990; Ko/ur ôr Mostler 1994;
Kozur et al 1996) The Recoaro Limestone, of
rypical Tethyan affinity (Vicencinjan Alps, north¬
ern Italy) is known to yield more than 250 radio-
larian species (l.ahm 1984; Baumgariner et ai
1997). However, it Indudes no forms of the ne^v
genus (jloniernpyk (Table 1), vvhereas Mahinepua
and Bull Creek Faunas incliide abundanr spéci¬
mens and J number of forms of the new genus
Glomeropyle (described herein) This genus may
bc rcstricted to hlgh latitude aHmicy. Ihc com-
inon occurrence ol this gcnti.s, including cspecial-
ly G. g^antmackiei n. sp. and G. (?) galagala
n. sp. is charactcristic of the early Ladinian Bull
Creck fauna of the Caples Tcrranc, South Island.
Undescribed spccics ol the gcncra Poutpus De
Wever, 1979, Hozmadia Dumitrica, Kozur &c
Mostler, 1980, and PLifkerium Pessagno, 1979,
are aiso présent. The presence of simple multi-
cyrtüids and the absence of the genus Ladino-
campe Kozur, 1984 may characterize the
Southern Heniisphere high latitude fauna in
ternis of paleobiogcographic affinity.
TRIASSIC RADIOLARIA IN SIBERIA
Dzugadzak River Section, Omolon Massif
Radiolaria are présent in the Dzugadzalc Section
of the Omolon Massif (uortheastern Siberia).
The Omolon Massif is regarded as a microconti-
nent with Pre-Cambrian metamorphic basement
and a sedimentary cover of Paleozoic and
Mesozoic âge (Fig. 7). Triassic rocks in this
région vvere deposired in oceanic conditions as
hcmipelagites. lliey are represented predomi-
nantly by claystones and mud.stones wiih rare
limeïïtûncs and contâin ammonoids, pseudo-
planktonic bivalves, foraminifers and radiola-
rians. Betirhic fossils are relatively rare (Dagys et
al. 1979; Egorov et al. 1987; Dagys étal 1991,
Dagys & Konstaminov 1995; Egorov bc Bragin
199S).
The IViassic section is located on rhe left bank of
Dzugadzak River in its middle reaches. The fol-
lowing unies arc exposed as follows (Figs 6, 7):
la. Power Triassic, Jndaan Stage (?)
Unit I, Pale-grey claystones with poorly preser-
ved brachiopods .10 m.
Ik Lower TriassiCy Power Olenekian
Unit 2. Pale-grey bitumiaotLs platy and massive
limestone with rareintcrcalations of grey mud-
stonc .7 m.
Unît 3. Grey, dark-grey and brownish-grey mud-
stone with intercalations (0.1 m) of grey limesto-
nc and brownish-grey clavstone .3 m.
Unît 4. Grey and dark-grey thin-beddeci mud-
Stone with intercalations (0.1-0.2 m) ol black
caustülïioHthic shale with rare phosphoritic
concrétions containing poorly preserved
Radiolaria .6.5 m.
Units 2-4 are characterized by conodonts and
bivalves confîrming the présence of the early
Olenekian: hedensrroerni and tardas zones.
Je. Upper Olenekian Stage
Unit 5. Dark-grey mudstone with Claraia aranea
Tozer .4 m.
2a. Middle Triassic, Middle Ânisian
Unit 6. Dark-grey and black thin-bedded mud-
GEODIVERSITAS • 1999 • 21 (4)
511
Aita Y. & Bragin N. Yu.
stone with ammonoid Czekanowskites decipiens
(Mojsisovics). Lower contact uf th'is bed erosio-
nal with a stratigraphie gap representing carly
Anisian tinte.8 m.
2b. Middle TrUissic, Upper Anisian
Unit 7. Dark'grey and black mudstone with
numeroiis phosphoritic concrétions, with the
ammonoid Amphipopanoceras dzenginense
Archipov and radiolarians Triassothamnulus (?)
sp., Entactinia sp., Pstudmtylosphaera (?) sp. ex gr.
P. fragilis (Bragin, 1991), P. (?) sp.> Spongo-
discoidca (?) gcn. indet., SpongopalVmm (?) sp.,
Stauracontium (?) .sp., Truusocampc (?) sp. ..9 m.
Unît 8. Datk'grey and black mudstone and silt-
stone with phosphoritic concrétions and beds of
grey fine sandstonc, black caustobioliihic shale
and brownish'grey biruminous limestonc with
the ammonoid Para fre ch i tes s u b la quea ta s
(Bytschkov, 1968) . 8 m.
2c. Ladinian
Unit 9. Black thin-bedded mudstone interbed-
ded with grey, yellow and whice claystone and
dark-grey biiuminotis limcstone with Daonella
prima Kiparisova, 1937 ...».5.5 m.
Unit 10. Dark-grey and black mudstone and
caustobiolitic shale with numerous phosphoritic
concrétions conraining the ammonites
Arctoptychites omolojemis Archipov, 1974 (lower
2.5 m), Arctogymnites cf. spectori Archipov, 1974,
Indigiraphyllites oimebonensis Popov, 1946 (5-
5.5 m above has'e), algac Tasmanites sp., and
Radiolaria: Anhaeocenosphacm sp., Entactinia sp.,
Ferresium (?) sp., Hindeosphaera (?) sp.,
Hozrnadia (?) sp., Laxtorum (?) sp., Paebus (?) .sp.,
Parentactinia ptt^iax Dumitrica, P. cf. inerrne
Dumitrica, 1978, Praenausna Pottlpus
Glomeropyle horeale n. sp., Silicarmtger costatiis
costatus Dumitrica, Kozut Ôc Mostler, 1980,
5. cf latus Kozut &: Mostler, 1994, Spongo-
discoidea gcn. sp. indet., Spongopallium affi
koppi (Lahm, 1984), Stauracontium (?) sp.
.....6.5 m.
Unit 11. Black platy siltstone interbedded with
yellow and white claystone, with rare phosphori-
ric concrétions containing ccphalopods Arcto¬
ptychites sp,, Indigirophylliies sp.. Giyponaiitilus
sp. ex gr. G. kegalensis Sobolev. 1989 (1-1.2 m
above ba.se), Nathorstites sp. cl. N. melearni
Tozer, 1961, Aristoptychites kolymensis Kipari.sova,
1961 (13-3 m above base) .15 m.
Unit 12. Black thin-laminated mud.stone with
abundant phosphoritic concrétions containing
cephalopods- Nathorstites melearni Tozer,
Arïstoptychitcs kolymensis Kiparisova, 1961 (1-
2 m above base), Sphaeroclndiscites omolojemis
Bytschkov, 1968, Indigirophylliies oimekonensis
Popov, Nathorstites mecornudli (Whitcaves, 1889),
Sintipltcorhynchia kegalensis Dag)'s. 1965 (2.8-
9.7 m above base), Nathorstites lindstroemi
(Boehm, 1903), Sphaerocladisvites omolojemis
Bytschkov (9.7-10.3 m above base), and Radio¬
laria: Archaeocenosphaera sp.. Pseudostylosphaera
sp , Ferresium (?) sp.10.5 m.
Unit 13. Black mudstone with abundant phos¬
phoritic concrétions with ccphalopods
Nathorstites lindstroemi Bohm, Sphaerocladiscites
omolojensis Bytschkov (1.3-2.3 m above base),
Proclydonautilus aniarnemis (Sbimansky, 1957)
(4.1-6 m above base) .11.6 m.
J. Late Triassic, Carnian
Unit 14. Dark-grey bituminous siltstone with
abundant phosphoritic concrétions with
Disi'ophyllîtes sp., Stolleyiies et. tennis (Stolley,
191 i), Proclydonautilus dniamensis (Shimansky),
Cenoceras horeale Dagys àc Sobolev, 1989 (0-
0-3 m above base), Proclydonautilus anidniensis
(Shimansky), Pennospiriferina papovi Dagys,
1965, Pennospiriferina {llentospirijerina) costata
Dagys, 1965, P (D.) pepidiaevi Dagys, 1965 (1.1-
3 m above base), Holcothyuchia tibetica (Bittner,
1899) (4.5 m above base), and Radiolaria:
Pseudostylosphaera sp., ferresium sp.2 m.
Unit 15. Black placy siltstone with rare phospho¬
ritic concrétions and macrofossils: Discophyllites
tairnyrensis Popov, 1961, Cenoaras horeale Dagys
de Sobolev, Pennospiriferina {Dentospiriferind)
costata Dagys, Planirhynchia ydkutica Dagys,
1965 (4.5-4.9 m above base) .10 m.
512
GEODIVERSITAS • 1999 • 21 (4)
Non-Tethyan Triassic Radiolaria from New Zealand and Siberia
Unit 16, Dark'grey massive and platy bioturba-
ted siltsrone with rare carbonate concrétions
containing Discophyllites taimymisis Popov, and
Pennospinferina (Dentospiriferirm) cmtnta Dagys
(5.3 ni above b.ase) .8 m.
Unit 10 of this section contains the most diverse
radiolarian assemblage including Glomeropyle
horeale n. sp. and ammonoids which are com-
mon in norchcastcrn Siberia, but not présent in
the low-latitude régions. This scquencc was ori-
ginally interpreted as carly Ladinian (Dagys et ai
1979) but has been redetertnined as the lowcr
part of the latc Ladinian (Dagys et al. 1991;
Dag)'s ôc Konstantinov 1995), This conclusion
was based on animonoid data. However, radiola-
rian faunas have doser alünity wrth carly
Ladinian assemblages, based on the présence of
such taxa as ParenUictinia puguax Dumitrica,
P. cf. inermr Dumitrica, SiUianiaiger cosTatus
costatiis Duttiirrka, Ko^ur ôt Mosiler, cf. latus
Kozur & Mostler, Spongopallium aff. koppi
(Lahm).
The variance of these two âge interprétations
require further research.
The âge ranges of the key radiolarian taxa may be
longer than presently understood and rhere is as
yet poor corrélation between ammonoid zones of
high- and low-paleolatitude Ladinian sections.
CONCLUSIONS
Radiolarian faunas of Middie Triassic âge from
New Zealand and northeastern Siberia have been
documented. They are characterized by abon¬
dant occiurences of non-Tethyan species inclu¬
ding seven new species of Glomeropyle n. gen.
(dcscribcd heretn) Alihough the faima includes
many species known from the European Tethyan
sequences>. the pnesence of Glomeropyle n, gen. is
only known from souitiern and northern high
latitudes during Middie IViassic time. In terms of
Triassic paleohiogeography these radiolarian lau-
nas appcar to rcflcct a bipolar latitudinal pattern.
Furrher examioatlon of New Zealand and Sibe-
rian radiolarian faunas are required in order to
csrablish Boréal and Austral launal différentia¬
tion from Tethyan forms.
In New Zealand, the Mabinepua early Ladinian
fauna in the WaipapaTerrane has a non-Tethyan
affiniry and is similar to that in the Capics
Terratie. Furthermore, the Mahinepua Section
ofVers great potential for establLshment ofa stan¬
dard radiolarian biostratigraphy for Middie and
Late Triassic successions that acctimulated in
Southern high latitudes along the margin of
G O n dwan aland.
SYSTEMATIC PALEONTOLOGY
Type specimens of species authored by Aira are
deposited at the Geology Department,
Utsunorniya University (UTU), and of species
authored by Bragin are deposited at the
Geological Institiite (GIN), Russian Academy of
Sciences.
Suborder SPUMELLARIA Ehrenberg, 1875
Glomeropyle A\i^ & Bragin, n. gen.
TyPÊ species. — Glomeropyle atirora Aita n. sp.
EtymoIOCY. — Làùn, glomero- form into a bail;
Greek fyk~ gâte, orifice, opening.
OccuRKtNCE. — Middie Triassic. Anisian to
Ltdinian. Waipapa l'err.tne, Norih Bland and Caples
Terrane. South Island, New Zealand, Omolon Massif,
northeiiMcrn Siberia.
DïaGNOSIS. — Shell of variable small to large size,
subspherical, with upen subcircular uperture and pylo-
me, wirli or without primar)' spincs; wall very iltick,
muiti-layercd, with internai cavity, with or without
internai spicnic, without mcdu|)ar>'shclls,
Remarks
Glomeropyle n. gen. differs from the Tertiary
Prunopyle Dreyer, 1889, emend Kozlova in
Kozlova & Gorbovetz, 1966 by having a heavy
thick-walled sheJl without mcdullary shells. It
differs from Sphaeropyle Dreyer, 1889 by having
a Icss spherical outer shell with pores irregularly
arranged, and variable in size, and without
medullary shells.
Although tlierc arc a number of species known
from the Middie Triassic of New Zealand and
GEODIVERSITAS • 1999 • 21 (4)
513
Aita Y. & Bragin N. Yu.
Fig. 8. — Glomeropyle aurora Aita. n. sp.; A-C, holotype (photo Nos 31101, 31102 & 31107); A, B. stereograph, C. latéral view; D,
E, paratype (photo Nos 31123, 31125), stereograph: F. paratype (photo No. 31106); G. H, photo Nos 31109, 31110. Sample MAH-
3.5, Unit 2. Mahinepua Peninsula. North Island, New Zealand. Scale bar: 100 pm.
Russia, however, no record of forms resembling
any species of Glomt^rùpyle n. gcii. bas been
found from Middle Triasslc séquences in the
Europe, japan, Southeast Asia or North yVmcrica.
Thus, this genus appears to be restricted to nortli-
ern and Southern high latitude areas, suggesting a
bipolar biogeographic distribution.
Glomeropyle aurora Aita, n. sp.
■(Fig. 8A-H)
Tvte material. — Hulon^pc: UTUlOl (Fig. 8A-C).
Paratypes: UTU102 (Fig. 8D, E), UTIJ103 (Fig. 8F).
Type locality. — Al! specimens from sample
PO4/fl03 (= MAH-3.5), Mahinepua Peninsula.
514
GEODIVERSITAS • 1999 • 21 (4)
Non-Tethyan Triassic Radiolaria from New Zealand and Siberia
Fig. 9. — Glomeropyle boreale Bragin, n. sp.; A, holotype; B-F, paratypes. Northeastern Siberia, Omolon Massif, Dzugadzak River,
Middie Triassic, Ladinian, Unit 10. Scale bar: 100 pm.
Age. — Middie Triassic (Anisian to early Ladinian).
Etymoiogy. — Latin, nurora, dawn, morning.
OccuRRENCf. — Lovvcf grceii argillite (sample
MAH-3.5)) Mahinepuu Pcninsula. Whaiigaroa area.
Waipapa Terrane, North Lland, New Zealand.
Measuremen ri. — Miaimum widili- 180-250 pm,
height; 200-305 pm, thickness of shell wall: 10-15
(max. 20) pm.
Description
Relatively small, ovoidal shell with a few spines
or clusters of short spines at one pôle and with a
short pyiome at the orher pôle. Cortical .shell
usually thin-walled; upper part hemisphcrica!,
lower hall part tapering, inverted conicaJ with an
aperturc. Pores suhcircular lo irrcgular in shape,
widi or wîthout pore Irames, Idiome Icss develo-
ped, with a few short spines. Aperture narrow,
GEODIVERSITAS * 1999 • 21 (4)
515
Aita Y. & Bragin N. Yu.
rwo to three rimes as wide as rhickness of shell
Wall. No mcdullary shells recognized.
Remarks
This species difFers from Gbmeropyle poinui Aita
n. sp. in irs smaller size and thinner shell, and by
having a few spines or clusters of short spines at
one pôle.
Glorneropyle boreale Bragin, n. sp.
* (Fig. 9A-F)
Pylentonemidac (?) gen. indet. — Egorov & Bragin
1995,%. 2 {] 0-12).
Type material. — Holoypc GIN No. 7438-89-1
(Fig. 9A).
Type LOCALITY. — Omolon Massif, Dzugadzak River.
Age. — Middie Triassic (Ladinian).
EtymoIOGV. — Greek, boreios, god of thc north
wind.
Occurrence. — Middie Triassic, Ladinian. Omolon
Massif, northeastern Siberia.
MeasuREMENTS. — Maximum width of shell: 230-
330 pm, heighl wirh pylome tube: 310-385 pm, dia-
meter of aperture: 55-75 pm, length of spines:
50-120 pm.
Description
Large subspherical or roughiy ellipsoidal shell
with well-developed .subcircidar aperture fonning
short pylome. Small short rod-like spines are pré¬
sent around aperture, three of them longer than
others. Outer shell with rwo visible layers; outer
layer with polygonal (trigonal to pentagonal)
commonly irnegular pore frames with apophyses
and massive nodes ar vertices. Inner layer with
small irregular pore frames.
Shell wall vtry rhick, inner cavity small, inner
structure unclear. One or more primary spines
présent, each with triangular in cross-section
proximally, rod-like distally. Sometimes primary
spines are absent.
Remarks
Glorneropyle boreale Bragin, n. sp. differs from
G. mahinepuaensis Aita, n. sp. in having a rou-
gher shell surface, and in its larger and more
clearly defined polygonal pore frames with massi¬
ve nodes at vertices.
Glorneropyle poinui Aita, n. sp.
(Fig. lOA-F)
Type material. — Holotype: UTU104 (Fig. lOA,
B). Paratypes: UTU105 (Fig. lOC, D), UTU106
(Fig. lOE),
Type LOCALHY, — AU specimens from sample P04/
fl03 (= MAH-3.5), Maliinepua Peninsula.
Age. — Middie Triassic (early Ladinian).
En'MüLüGV. — Maori, poinui, a large bail.
Occurrence. — Lowci grcen argillitc (.sample
MAH-3.5), Mahinepua Peninsula, Whangaroa area,
Waipapa Tetrane, North bland, New Zealand.
Mfasurememt.S, — Maximum width: 265-310 pm,
height: 310-355 pm, thickness of shell wall: 25-30
(max. 40) pm.
Description
Large spherical lo subspherical shell with a short
pylome. Cortical shell thick-walled with nume-
rous subcircular tü irregular small pores. Pores
variable in size usually withour distinct pore-
frames, bur rarely wiih polygonal pore-frames.
Overall outline smooth, but area around pylome
rough. Aperture narrow. No mcdullary shells
recognized.
Remarks
Glorneropyle poinui Aita n. sp. resembles Glo-
meropyte aurora Aita n. sp. in overall shape, but it
is disdnguishcd by its large size (> 265 pm in
maximum width) and chicker shell wall com¬
monly with smooth surface.
Glorneropyle (?) galagala Aita, n. sp.
(Fig. 1 lA-C)
Type material. — Holotype: UTU107 (Fig. IIA,
B).
Type locality. — Sample PO4/fl03 (= MAH-3.5),
Mahinepua Peninsula.
Age. — Middie Triassic (early Ladinian).
516
GEODIVERSITAS • 1999 • 21 (4)
Non-Tethyan Triassic Radiolaria from New Zealand and Siberia
Fig. 10. — Glomeropyle po/nu/Aita, n. sp.; A, B, holotype, stereograph {photo Nos 31104, 31105); C, D, paratype stereograph
(photo Nos 31126, 31127); E, paratype (photo No. 31128); F, photo No. 31135. Sample MAH-3.5, Unit 2, Mahinepua Peninsula,
North Island, New Zealand. Scale bar: 100 pm.
GEODIVERSITAS • 1999 • 21 (4)
517
Aita Y. & Bragin N. Yu.
Fig. 11. — A-C, Glomeropyle (?) galagafa Aita, n. sp.; A. B. holotype, stereograph (photo Nos 31075, 31076); C, c!ose-up view,
holotype (photo No. 31077); D*F, Glomeropyle grantmackiei Aita, n. sp.; holotype (photo Nos 31089. 31090, 31092); D, E, stereo¬
graph; F. oblique basal view. Sample MAH-3.5. Unit 2. Mahinepua Peninsula, North Island. New Zealand. Scale bars; A. B, D-F,
100 pm; C. 50 pm.
Etymolugv. — galagala^ a rattle.
OCCURRHNCF. — Ijowtrr preeri argillitc (sampie MAH-
3.5). Mahinepua Peninsula, ^C'Tiangaroa area, Waipapa
Terrane, Norrh Island; Bull Creek (sample YABC-26),
Caples 'l'crranc, South Island, New Zealand.
MeasuREMENTS. — Maximum widrh of shell:
210 pm (holotype 194 pm), height of shcll: 220 pm
(holotype 188 pm), length ofspines: 70, 50 pm (holo¬
type 62.5, 50 pm), length of pylomc:100 pm (holo¬
type 150 pm).
Description
Spherical shell with two conical spines at one
518
GEODIVERSITAS • 1999 • 21 (4)
Non-Tethyan Triassic Radiolaria from New Zealand and Siberia
Fig. 12. — Glomeropyle grantmackiei Aita, n. sp.; A, B, paratype, stereograph (photo Nos 31066, 31067); C, D, stereograph (photo
Nos 31098, 31097); E, {photo No. 31072); F, paratype (photo No. 31073). Sample YABC-26, Bull Creek, Caples Terrane, Otago,
South Island. Scale bar: 100 pm.
GEODIVERSITAS • 1999 • 21 (4)
519
Aita Y. & Bragin N. Yu.
end and a developcd pylome at the other end.
Cortical -shell double layered with rough ridged
surface; outer layer with rriangular to polygonal
coarse mesh consisting of interconnecring bars;
Inner layer fine meshed but unclear in detail,
Two distinct conical .spines forming angle of 60®.
Angles between onc pôle and cach .spine asym-
metric, 20® and 40®. Pylome wcll-developed,
with long spincs, sometimes forming a long per-
forate hoUow tube. Usually two or three minute
spines fused at ends, forming a rod-like stout
spine.
Remarks
This species is questionably assigned to the genus
Glomeropyle AsKTi ôc Bragin, n. gen. because it has
approximateJy spherical shell and has two dis¬
tinct horn like spines.
Glomeropyle grantmackiei Aita, n. sp.
(Figs 1ID-F, 12A-F)
Type MATERIAL. — Holotype: UTU108 (Fig. IID-F).
Paratypes: UTU109 (Fig. 12A, B), UTUllO
(Fig. 12F).
Type locality. — Holotype: saniplc PO4/fl03 {=
MAH-3.5)* Mahinepua Peninsula. Paraiypes: sample
H45/fô74 (= tield No. YABC-26), Bull Creek.
Ace. — Middle Triassic (early Ladinian).
EtymoLOGY. — This spccies is named for Professor
Jack A. Crant-Mackie, Department of Geology, The
University oi Auckland, in honour of his significant
contribution lu paleontology in New Zeaknd.
Occurrence. — Rare in the lower green argillire
(sample MAH-3.5), Mahinepua Peninsula,
Whangaroa area, Waipapa Tcrranc, Norrh Island;
common ro abundant in Bull Crcck (sample YABC-
26), Capics Tcrrane, South Island, New Zcaland.
Measurement-S. — Maximum widih of shell: 200-
345 pm, heigbt of shell: 21 5-325 pm, length of pyio-
me: 38-70 prn, width of aperture; 40-70 pm,
rhickness of shell: 40-60 pm, length of spines: 70-
120 pm.
Description
Large hemispherical, thick-walled shell with a
well-developed pylome. Cortical shell consisting
of a thick outer layer with coarse spongy mesh-
work and a thin inner spongy layer. Pores nume-
rous, irregular in shape, variable in size, closely
spaced, separared by intervening bars. Rarher
long, stout, rod-like slender spines are sparsely
distributed; four or five spines recognized on the
visible side. Each spine three-bladed up to midd-
Iç ol basal portion and with grooves only at base.
Aperture wcD-defined, medium-sized, (•orniing a
cylindrical to sometimes lubular pylome, with
two to thrcc dcscending spines.
Re.makks
Glomeropyle grantmackiei Aita n. sp. has a relati-
vcly broad morphological variation. It includes
such morphotypes as thosc ornamented with rid¬
ged, and lîodose surfaces on the inflatcd sub-
sphcrical shell. Very heavy massive rod-like
spines arc developcd on many spécimens from
the phospharic nodule sample of Bull Creek,
Caples Terrane.
Glomeropyle mahineptmensis Aita, n. sp.
(Fig. 13A-J)
Type materiai. — Holotype; UTUlll (Fig. 13A,
B). Paratypes: UTU1I2 (Fig. 13D, E), UTU113
(Fig. 13H,l).
Type locality. — Ail specimens from sample
PO4/fI03 (= MAH-3.5), Mahinepua Peninsula.
Ace. — Middle Triassic (early Ladinian).
ETYMOLüCY, — This species is named for Mahinepua
Peninsula, Whangaroa area, Northland, New
Zealand, as the type locality.
Occurrence. — Common in the lower green argilli-
tc (sample MAH-3.5), Mahinepua Peninsula,
Whangaroa area, Waipapa Terrane, North Island,
New Zealand.
Measurements. — Maximum width of shell: 144-
250 pm, heighr of shelh 138-280 pm, length of
spines; 25-55 pm. length of pylome: 18-50 pm.
Description
Cortical shell pyriform with an opening at one
end bcaring a short pylome. Pores small, subeir-
cular to subangular, irregularly arranged. Overall
shell with rough surface of numerous small
nodes at vortex of pore-frames. Slender, cylindri-
520
GEODIVERSITAS • 1999 • 21 (4)
Non-Tethyan Triassic Radiolaria from New Zealand and Siberîa
Fig. 13. — Glomeropyle mahinepuaensis Alla, n. sp. ; A. B, holotype, stereograph {photo Nos 3111 1 , 31112); C. photo No. 31119;
D, E, paratype, stereograph (photo Nos 31113, 31114); F, G, paratype, stereograph (photo Nos 31129, 31130); H. I, paratype, ste¬
reograph (photo Nos 31116, 31115); J, photo No. 31117. Sample MAH-3.5, Unit 2, Mahinepua Peninsula, North Island, New
Zealand. Scale bar; 100 pm.
cal, short spines widely spaced and developed RKMARKS
from ihe shcll surface. Berween two and five C/omeropyle 7mihniepuaemis Aiï3L, n, sp, resemblcs
spines rise upwnrd and at least two spines exiend Glomeropyle grofittnaebiei Aita, n. sp. in overall
downwards. Pylome well-developed with a .short shapc, but is distinguished from the latter in
stout descending spine and many minute spines. having a smaller shell, thinner shell wall and
No medullary shell recognized. shorter, more slender spines. This spccies differs
GEODIVERSITAS • 1999 • 21 (4)
521
Aita Y. & Bragin N. Yu.
522
GEODIVERSITAS • 1999 • 21 (4)
Non-Tethyan Triassic Radiolaria from New Zealand and Siberia
from Glomeropyle aurora Aita, n. sp. by having
rather rough, pointed nodes on the shell surface
and more frequcndy arranged shorr spines.
Glomeropyle waipapaemis n. sp.
(Fig. 14A-D)
Type material. — Holotype; U'FUlH (Fig. 14A,
B).
Type locaiity. — Sample PO4/fl03 (= MAH-3.5),
Mahinepua Peninsula.
Age. — Middic Triassic (carly Ladinian).
EtymoloOY. — This specLes is named for the
Waipapa Tcrrane. a typical accretionary complex of
Triassic ro Jurassic agc, including spilitc, chcrt, grccn
argillite, sandsrone, and minor limcstone, Norch
Island, New Zealand.
OccURRENtT. — Lowcr green argillite (sample
MAH*3.5), Mahinepua Peninsula. VCliangaroa area,
Waipapa Terranc. North Island. New Zealand.
MeASUREMENTS. — Holotype: maximum widch of
shell: 269 pm, height of shell: 313 pm, lengrh of
spines: 25 pm, length of pylome: 31 pm.
Description
Large thick-walled shell, upper half dome-shaped
and lower funncl-shapcd, wirh rather ridged sur¬
face. Very shorr, pointed spines are spiusely dis-
tributed at apex between four facets; four spines
recognizcd on the visible side. Shell probably
double-lavered: inner layer is unclear, but inter-
vcning bars are visible. Pores closely-spaced, cir-
cular ro iubcircular, variable in size, irregularly
arranged with rectangular, pentagonal ro hexago¬
nal pore-frames. Ridges or small knobs are deve-
loped from apex of pore-fraraes. Pylome
well-developed, with teeth-like spines.
Remarks
This species resembles Glomeropyle grantmackiei
Aita, n. sp. in having a similar shapc and size.
Fig. 14. — A'D G\omeropy\e wa/papaens/y Aita, n. sp.;
A, B. holotype. steraograph (photo Nos 31079. 310785);
C, D, stereograph (photo Nos 31081, 31084). E-G. Glomeropyle
cf. grantmackiei Ma. n. sp. (photo Nos 31087. 31088, 31091);
E. F. stereograph. G. basai view. Sample MAH'3.5, Unit 2,
Mahinepua Peninsula, North Island, New Zealand. Scale bar:
100 pm.
However, it differs from the laiter in having
more circular to subcircular pores on the shell, is
less spinose, and has very short pointed spines.
Acknowledgements
We are gratefui co ProL Toyosaburo Sakai for
valuable advice and encouragement on an aspect
of radiolarian study. We thank Chris Hollis
(Geological Survey of Japan) and Jack A. Grant-
Mackie (The University of Auckland) for impro-
veraent of the early draft of this paper.
Dr Paulian Dumitrica kindly provided corn-
ments on the taxonomy and information on
Tethyan species- At$u.shi Takemura (Hyogo
Teacher’s Univcrsiiy), Rie S. Horl (Hhinie
Univcrsity)î Kazuto Kodama (Kochi University),
Bernhard Sporli (Llniversiry of Auckland) and
Toyosaburo Sakai (Utsunomiyu Universir)4 assis-
ted with sampling at the Mahinepua Section in
New Zealand. Hamish Campbell (Instirutc of
Geological Nutlear Sciences) greaily improved
the manu-script. We rhank P. Dumitrica and
A. Ollier for reviews. This work was partly sup-
ported by grant.s from the Minlstry ot Education
Grants-in-Aid International Scicntific Research:
1995 and 1996 to Prof. T. Sakai (Project
No. 07041085).
REFERENCES
Adams C. J. üc Graham J. J. 1997. — Age of mera-
morphism of Otago Schîst in eastern Otago and
détermination of protoliths from initial .strontium
isotope eharaetcristlcs. Neto Zealand Journal of
Geobgy and Geophyücs 40 (3): 275-286.
Ata V. & Spofli K. B. 1992. — Tccttmic and paleu-
hiogeographic .signiflcance of radiolarian microfos-
sils in the Fermian-Mesozoic basemear rocks ofthe
North Island. New Zealand. Palaeogeographyy
PabeodhnatoloQ>, P^^Lleifecology9(^ {\fly. 103-125.
— 1994. — l.atc Triassic Radiolaria from the
fotlesie Terranc, Rimucaka Range. Norrh Island,
New Zealand. Nao Zealand Journal of Geobgy and
Geophyiîcs yi: 155-162.
Arthipov Yu. V. 1974. — Triassic stratigraphy oj the
Tastern Vttkutia^ Y.ikutsk publishing, Yakutsk,
270 p. [in Russian).
Baumgarcnçt P- O-i Dumitric.i P,, Gorican S. &
O’Dogherty L. 1997. — Mesozoic radiolarîan-
bearing sédiments of the Southern Alps (Switzer-
GEODIVERSITAS • 1999 • 21 (4)
523
Aica Y. & Bragin N. Yu.
land, N-Iwly) INTERRAD Vlll Rre^Meeting FM
Trip guide. 16*21.
Bittner A. 1899. — Fos^sils From the Triaisic of Sou¬
thern Ussuri Région. Contributions of Geological
Committec, Sankt-Petfivburg 7 (4): 56-98 \in
Russian]-
Black P. M. 1989. — Régional metamorphism in
basement Waipapa Group, Northland, New
Zcaland. Royûi Society of Nciv Zealand Bulletin IG:
15-22.
— 1994. -— The "Waipapa Terr,ïnc’\ North Island,
New Zealaod: Subdivision and corrélation.
Geoscience Reports vf Shtzuvka Unù'ersity 20: 55-62.
— 1997. — Pcrmian-Jurassic “bxscmcnt” rerranes of
the Norfork Ridge System: Northland Pcnin.sula
(New Zealand) and New Caledonia (abstraa): 19-
21, in Bradshaw J. D., Wcaver S. D. (eds).
Abstract, Internûtional Conférence on Terrarie
Geology, Christehurch, Neuf Z^aLrnd.
Blome C. 1983. — Upper Triassic Capnucho-
sphaeridae and Capnodocinae (Radiolaria) from
east-central Oregon. Micropaleonioiogy 29 (1): 1-49.
— 1984. — Upper Triassic Radiolaria and radiolarian
zonarit)n from western North America. Bulletins of
American Rtilt'Qntolngy (311^)* 1-88.
Boehm |, 1903. — Ubet die Obertriadi-she Faune der
Barcninsel, Vetemknp^-Akademiens Hnndlingorx
Kongligd SvenskiL Stockholm 37 (3): I -76.
Bragin N. Yu. 1991. — Radiolaria and Losver
Mesozoic iiniis of the USSR east régions.
Transactions of the Acaderny of Sciences USSR,
Nauka, VIostow 469: 1-122 (in Russian with
Fnglish summar)')'
Bytschkov Yu. M. iR. Kiparisova !.. D. 1968. —Somc
Middie Triassic Ceraritida of northern and nor-
theastern /Vsiu: 299-308 [in Russian], in New species
offossif plants and ln\fert(brata of the LfSSR.
Volume 2, puit I Nedra, Mo.scow
Dagys A. .S. 1965. — Trias.<ie Braehiopoda of Slheria.
Nauka, Moscow, 186 p. |in Russian].
Dagys A. S., 7\rkhipov Yu. V. & Bytchkov Yu. M.
1979. — Siratigraphy of the Tria.ssic of north-
eastern Asia. Nauka, Moscotv, 240 p. [in Russian].
Dagys A. S. & Konstantinov A. G. 1995. — New
zonal scaie loi the Tadinian ot nnnheastern Asia.
Stratigraphy. Geological Corrélation, \foscow 3 (3):
121-127 [in Russian with EiiglLsh transJaiioiij.
Dagys A. S., Kon.staniinov A. G. & Sobolev E. S.
1991. — Revised biostratigrapliic scale of the
boréal Ladinian: '4-95 [in Russian], /«
Biostratigraphy and palaeontology of the Siberian
Triassic. Nauka, Novosibirsk.
Dagys A. S. is: Sobolev F. S. 1989. — The carlicst
Triassic Nautilina, Doklady Akadernti nauk SSSR
305 (2); 446-448 [in Russian].
De Wever P,. Sanflipp*. A., Riedd W. R. & Gniber B.
1979. — Tria.ssic radiolarians from Greece, Sicily
and Turkey. Micropaleontology 25 (1): 75-110.
Dumitrica P. 1978. — Triassic Palaeoscenidüdae and
Eiuactiniidae from the virxininian Alps (Iraly) and
casteru Carpathians (Romanta). Dari de Seama ale
Sedintelor, fnstitutul de Géologie si Geoflzica-
PaleontoLigien Bucuresri 64 (1976-1977): 39-54.
— 1982. — l’orenianellinidac, a new Family of
4 nassic Radiolaria. Dari de Seama ale Sedintelor,
Ifiititutul de Géologie si Geoftztra-Paleontologie,
Bucuresti 67 (1979-'1980): 75-82.
Dumitrica P.. Kozur H. & Mostler 11. 1980. —
Contribution to the radiolarian lauiia of the
Middie Triassic of ihc Southern Alps. Geologische-
Palàontoiogiiche Aîmeiluogen., j/insbruck 10 (1). 1-
46.
Egorov A. Yu., Bogomolov Yu. A., Kon.staniiiiov
A. G. ik Kurushin N. I. 198^. — Stratigraphy of
the Triassic depo.sits of Kotelnyi Island (New
Siberian Archipclago): 66-80 [in Russian]. in
Boréal Tritissie. Nauka, Moscow.
Egorov A. Yu. & Bragin N, Yu. 1993. — First
Radiolaria from die Triassic of Northern Siberia.
Doklady AkadewH Nauk, Moscow 340 (5), 649-
652 [in Russian].
Ehrenberg C. G. 1875- — Forisetzung der miknageo-
logischcn Srudicn als Gcsammt-Llcbcrsieht der
mikroskopischen Palaoniologic glcichartig analysir-
cer Gebirgsarren der Erde> mit specieller Rucksicht
auf den Pülytystincn-Mcrgcl von Barbados.
Physikaltsche Abhandlungen der Kùniglichen
.Akademie der Wissenschafren zu Bcrlim 1-226.
Gorican S. Buscr S. 1990. — Middlt Triassic
radiolarians from Slovcnia (Yugoslavia), Geologija
31,32; 133-197.
Matla S., Yoshikura S.. Aitxi Y. & Sato E. 1988. —
Noec.s on ihc gcologv .ind palcontology of the
Chrystalls Bcacn Complex: 21-28, in Prelhninary
Report on Accretion Complex Gçolvgy of the Otago
Coast Section in the South Island, New Zealand
(Na. \)y C'noperarivt: Research Ciioiip ol Japan and
NewZealano. KocKi Un!versir}\ Kochi.
lin Y.. Wardiaw' B. R.. Clenister B. F. Kotlyar
G. V. 1997. — Permian chronostraugraphic subdi-
vi.sions. Episodes 20 ( 1 ): 10-15.
Kiparisova L. D. 1937. — Triassic tauna of Okhotsk-
Külytna Région and western shure of Kamchaika.
Transat tinns ofArctk Imtitute, Leningrad 91: 1-123
[in Rus.çianJ
— 1961. — Paleontülogical contributions lot strati¬
graphy of the Triassic tif Primurye Région. Part 1.
CIcphalopoda. Transactions of VSEGEl. new sériés
48: 1-280 [in Russian).
Kozur II. 1984. — New radiolarian taxa from the
Triassic and Jurassic. Geologische-Paliiontologhche
Mitieilungen, Innsbruck 13 (2): 49-88.
Kozu! H. tk Mosîlci M. 1979. — Bciiiage zut
Erforschung der mcsozoischcn Radiolarlen.
l’eil 111: Die OberfanTilien Actinommacca llaeckel,
1862 emend.. AntNcace.i Hacckcl, 1882,
Multiarcusellacea nov. der Spumellaria und trias-
sische Nassellaria. Geologische-Palaontologische
524
GEODIVERSITAS • 1&99 • 21 (4)
Non-Tethyan Triassic Radiolaria from New Zealand and Siberia
Mineilungetu Innsbruck 9 (1*2); 1-132.
— 1981. — Bcitràge zui Ërforschung cler mesozol-
schen Rjcliobrien. Teil IV: Thalassosphaeracea
Haeckcl, I80>2, Hexascylacea Haeckel, 1862
emend. Petrushev.skaya, 1979, Sponguracea
Hacckcl. 1862 emend. und weitere crias.si.sche
l.ithocycliacca, Trcmatodiscacca, Actinommacca
und Nassellafia. Geohgische'Pttlüoniologi^che
Mttteilungau Innsbruck, Sonderhand 1: 1-208.
— 1994. — Anisian to MtddJe Carnian radiolatiaii
Zonation und description of somc srratigaphically
important radkdariin^. Cii:olo^in‘he-P( 2 lâûnrologische
Mitteilungen, Innsbruck. Son^erband 3; 39-235-
Kozur H., Krainer K. 6c Mosrlcr H. 1996. —
Radiolarians and facics ofihc Middic Tria.ssic Loibl
Formation, wSouili Alpine Kurawanken Mountains
(C'arinthia, Ausiria). Ccûlogisvhe-Pt^làornologische
Mitteilîingcn, Innsbruck 4: 195-269.
Lahm B. 1984. — ^ipumciluricnfauncn (Radioiaria)
ans den mitieliriassivchen B(icbensieiner'.Schichten
von Recouro (Norditalien) und den obertriassi-
schen Reîllirïgcrkalken von tîrol?reifling (Ôscer-
reich) - .Sysiemacik - Srrangi aphie. Münchner Geo-
wtssenschaftliche AyuJndllîiugen, Reihey^ 1: 1-161.
Leven E. Ja. &: Granr-Mackic J. A. 1997. — Perrnian
fusulinid Foraniinitcra from Wheiowbero Point,
Orira Bay, Noithland, New Zcland. New Zealand
Journal of Geology and Geophydes 4'73-486.
Matsuoka A., Aita V., iVlunasfi Wukita K.^ Shen G.,
Ujiie H., Sasliida K.^ Visbnevskaya V. S., Brugin
N. Y. &: Corde)' F. 1996- — Triassic radiolarians
and their faunal attiniiics in New Ziraland, in
Mesozoic radiolarians artd radiolariaii-bearing
.séquences in the dreum-Pacific region.s: A report of
the svnipo.sinm "Radiolaiians and Ürogenic Belts”,
777eÂWAn’5:203-213.
Nakascko K. Nishimura A. 1979. — Upper
Triassic Radiolaria from Southwest Japan. Science
Reports, Collège of General tiducation^ Osaka
University 28 (2): 61-109,
Ohtaka M., Airu Y. & Sakui T. 1998. -- Middic
Triassic radiolariun biostratigraphy of the bedded
cherc in the Mininsa qmirry, Kuzuu l own, Ashio
Monntains. News of Osaka Micropaleuntologists
(NOM), Spécial Publication I i: 81-93 lin Japanesc
with English abstract].
Ozawa Y. 1925. —• Paleoniological und stratigraphical
studios on the Pcrmo-C'arboniteroiiç lime.stone of
Nagato. Part 2, Paleonrology. Journal of the College
of Science, Impérial University of Tokyo Â5'. 1-90.
Pessagno Jr. L. A. 1977. — Upper Jurassic Ridiolarla
and radiolartan biostratigraphy of the California
Coast Ranges. MkropaleontülogŸ 23 (l): 56-113.
— 1979. — Systcmatic Paleonrology, in Pes.sagno Ji.
E. A., Finch |. W. ik Abbott P. L. (cds), Upper
Trias.sic Radiolaria from the San Hipolito
Formation. Baja California, Micropaleontolo^ 25
(2): 160-197.
Popov Yu. N. 1946. — Ladinian fauna from Oime-
kon: 48-61 [in Russian], in Geology and minerai
resourees of the nortbenstern USSR. Volume 2. Soviet
Kolytna, Magadan.
— 1961. — Norian ammonoids of northeastern Asia.
Contributions to geology and minerai resourees of
norrheustern USSR, Magadan 15: 194-207 [in
Rus.sian].
Roser B. P., Mortimer N., Furnbull I. M. àc Lundis
C. A. 1993. — Geology and gcocliemisiry of the
Cupics Terrane. Otugo, New Zealand, Compo-
sitiona! variations near a Permo-l'riassic arc mar-
gin: 3-19, in Ballance P. F. (ed.).. South Pacific
Sedimentary Basim. Sedimenta>y Hasins ofihe World.
Volume 2. El-sevicr, Am.sicrdam.
Sakai T.. Aita Y., Higiicbi Y.. Flori R. S., Kodama K..
Takemura A., Campbell U., Grant-Matkie J. A.*
Mollis C. & Sporli K B. 1998. — Mesozoic pbos-
phiuic and tMlcarenus nodules conruining well-pre-
served radiolarian fauna from the Norrh fsland,
New Zealand. Journal of the Geologica! Society of
Japan 104 (2): v-vi.
Sashida K. 1991. — Early Triassic radiolarians from
the Ogam.ua Fonnarion, Kanro A-lounuin.s, central
Japan; Pan 2. Transactions and Proceedtngs of the
Palaeontolo^ual Snçieîy of Japan, new stries 161:
681-696.
■Shimaasky V. N. 1957. — New NautiÜda of the
USSR. Contrihutiom for Treatüc oj Paleontology,
Nauku, Moscow 1: 35-41 (in Ru.ssian).
-Smith A. G., Smith D. (7 Funncll B. M. 1994. —
yltlas of Mesozoic and Cenozoic coastlines.
Cambridge University Press, Cambridge, 99 p.
Sobolev E. S. 1989. — Tnassic Nautilida oJ north¬
eastern Asia. Nauka (Stberian brandi), Novosibirsk,
192 p. [in Russian].
Scotese C. R. 1997.— Paleogeographic Atltts. PALEO-
MAP Prtïgiess Report 90-0497. Department ol
Geology, University ol Texas ut Arlingeon,
Arlingron. Texas, 45 p.
Sp6rli K. R. 1978. — Mesozoic lectonics, Nortli
Island, New Zealand. Geological Society of Amenca
Bulletin
Sporli K. B.. Aita Y. Gibson G. W. 1989. —
Juxtaposition of Tcrhyan and non-Tethyan
Mesozoic lUidiolarian fciunas in Mélangés, Waipapa
Tertune, North Islutid, New Zealand. Geology 17
(8): 753-756.
Stolley E- 1911- — Zut KennrnLss der Arktischen
Tria.s. Noues jahrlmch fîir Minéralogie, Géologie und
Palàontologif l : 114 126.
Snglyaina K. 1997. rria.ssic and Lower Juras.sic
radiolariiin biostratigraphy in rhe siliccou.s calystone
and bedded cherc units of the southeastern Mino
Terranc, Central Japan. Bulletin of Mizunami Fossil
Aîmeum 24: 79-193.
l akemura A-> Aita Y., Hori R. S.. Higuchi Y-, .Sp6rli
K. R., C'ampbell H., Kodama K. &i .Sakai T.
1998. — Preliminary report on the lithostratigra-
phy of the Arrow Rocks and géologie âge of rhe
GEODIVERSITAS • 1999 • 21 (4)
525
Aita Y. & Bragin N. Yu.
northern part of tlie Waipapa Terrane, New
Zealand. News of Osaka Micropaleontologists
(NOM), Spécial Publication 11: 47-57.
Takemura A., Morimoto T., Aita Y., Hori R. S.,
Higuchi Y., Sporli K. B., Campbell H., Kodama K.
& Sakai T. 1999. — Permian Albaillellaria (Radio-
laria) from a limestone lens at the Arrow Rocks in
the Waipapa Terrane (Northland, New Zealand),
in De Wever P. & Caulet J.-P. (eds), InterRad
VIII, Paris/Bierville 8-13 septembre 1997,
Geodiver-sitas 2\ (4) : 751-765.
Tozer E. T. 1961. — Triassic stratigraphy and faunas,
Queen Elisabeth Islands, Arctic Archipelago.
Geological Survey of Canada, Memoir 316: 1-116.
Whiteaves J. F. 1889. — On some fossils from the
Triassic rocks of British Columbia. Geological
Survey Canada, Contributions to Canadian Paleon-
tology 1: 127-149.
Yabe H. 1906. — A contribution to the genus
Fusulina, with notes on Fiisulina limestone from
Korea. Journal of the College of Science, Impérial
Vniversity of Tokyo 2\\ 1-36.
Yao A. 1982. — Middle Triassic to Early Jurassic
radiolarians from the Inuyama Area, Central Japan.
Journal of Geosciences, Osaka City University 25 (4):
53-70.
Yeh Kuei-yu 1990. — Taxonomie studies of Triassic
Radiolaria from Busuanga Island, Philippines.
Bulletin of the National Muséum of Natural Science
2: 1-63.
Submittedfor publication on 11 March 1998;
accepted on 1 August 1998.
526
GEODIVERSITAS • 1999 • 21 (4)
Corrélation of the early Albian-late Turonian
radiolarian biozonation with planktonic and
agglutinated foraminifera zonations in the
Pieniny Klippen Belt (Polish Carpathians)
Marta B/^K
Institute of Geological Sciences, Jagiellonian University,
Oleandry 2a, 30-063 Krakôw (Roland)
bak@ing.uj.edu.pl
Krzysztof BP^K
Institute of Geography, Cracow Pedagogical University,
Podchor^zych 2, 30-084 Krakôw (Roland)
kbak@cyf-kr.edu.pl
B^k M. & B^k K. 1999. — Corrélation of the early Albian-late Turonian radiolarian biozona¬
tion with planktonic and agglutinated foraminifera zonations in the Pieniny Klippen Belt
(Polish Carpathians), in De Wever P. & Caulel J.-P. (eds), InterRad VIII, Paris/Bierville 8-
13 septembre 1997. Geodiversitas 2^ (4) : 527-537.
ABSTRACT
Marine pelagic deposits of the lower AJbian to upper Turonian inter\'al in
the Polish part of the Pieniny Klippen Belt are relativcly rich in radiolarian
fauna as well as in planktonic and agglutinated foraminifera. The proposcd
radiolarian zones (Holoayptocanium barbui^ Hemiayptocapsa prepolyhedra
and Hemicryptocapsa polyhedra) hâve been correlated with planktonic forami¬
nifera biozonarion (from TidnelUt primula to Dicarinella prhnitiva zone.s),
and with agglutinated foraminifera biozonation (from Haplophragmoides
nonioninoides to Vvigerinarnmma ex ^r.jankoi zones).
RÉSUMÉ
Corrélation des biozones à radiolaires de l'Albien inférieur- furonien supérieur
avec celles à foraminifères planctonicjues et agglutinés dans la région des klippes
piénines (Carpathes polonaises).
Les dépôts marins pélagiques de PAlbien inférieur-Turonien supérieur de la
zone dc.s klippc.s piénines sont relativement riches en faune de radiolaires,
ainsi que de foraminifères planctoniques et agglutinés. Les zones de radio¬
laires proposées (Holocryptocanium barbais Ifvniicryptoctipsa prepolyhedra cr
Hemiciypwcapsa polyhedra) sont en corrélation directe avec les biozones de
foraminifere.s planctoniques (de la zone Ticinelln primula à la zone
Dicarineüa primitiva) et celles des foraminif^res agglutinés (de la zone
Haplophragmoides nonioninoides à la zone Uvigerinammina ex jankoï).
MOTS CLÉS
Crétacé,
Radiolaria,
Foraminifera,
biostratieraphie intégrée,
zone des klippes piénines,
Carpathes.
KEYWORDS
Cretaceous,
Radiolaria,
Foraminifera,
integrated biostraiigraphy,
Pieniny Klippen Belt,
Carpathians.
GEODIVERSITAS • 1999 • 21 (4)
527
B^kM. &B^k K.
INTRODUCTION
Detailed micropalaeontological studies of marine
pelagic Cretaceous deposirs hâve been carried out
in rhe Picniay Klippen Belt during the last 15
years. A part of thcse concerncd bioscracigraphy,
based on differejic groups oFmîcrofauna; forami-
nifera (Birkenmajcr & Jednorowska ]987i
Gasihski 1988i Kostka 1993; K. Bi^k 1998), nan-
noplankton (Dudziak 1985)» dinoq'srs (Jamihski
1990) and radiolaria (M. B^k 1995, 1996a, b).
However, only very few studies comprise an intc-
grated biostraiigraphy of rhese deposirs
(Birkenmajer Z*/ 1979; K. BtjkfY^ïZ. 1995).
The Crccaccous dcposits ol thc Picniny Klippen
Bclt providc ihc bcst marctial lor iTc intcgratcd
biostraiigraphical studies in the whole
Carparhians, because rhey represenr pelagic and
hemipelagic calcareous-marly faciès, and contain
abundant micmfauna. These depos’us hâve been
formed în the Pieniny Klippen Basin
(Birkcnmajer 1977), a pari of the Penninic
Ocean-northcrn part of Western Tethys
(Fourcade étal. 1993) (Fig. lA). The sédimenta¬
tion during Albian thtough Campanian rook
place iindcr deep-water conditions, ar outer shelf
through Jower bathyal/abyssal depths, above or
near CCD (Birkenmajcr & Gasihski 1992;
K. B^k 1995a, b). l'hcy crop oui in a highiy tcc-
tonically deformed zone, known as the Pienîny
Klippen Belt, rhat séparâtes the Innct ftom rhe
Outer Carparhians (Fig. IB, C)'.
The présent aurhors propose here an integrated
local biostrarigraphy based on planktonic Fora-
minifera, agglutinaicd l'uraminifera and Radio-
laria for early Albian rhrough laie Turonian lime
span. rhe corrélation is based on studies of
microfauna from the sanie samples wirhin the
same sections. Foraminifera and Radiolaria are
relativcly abundant in the studied deposirs.
GEOLOGIC^\LSETTING AND
RADIOLARIAN HORIZONS
Twenty five sections locaced at Niedzica,
Kroscienko, Szczawnica, Jaworki, Sromowce,
Dursztyn, Szaflary and State Byscre hâve been
chosen for integrated micropalaeontological ana¬
lyses. A detailed description of profiles, sample
location, and lithology is given in papers by
HL (1992, 1993» 1998) and M. B^k (1995,
1996a, b, 1997). In 18 of these sections, radiola-
rian skelctons hâve been foimd together with
forarninifera. and thc best sections (15) were
used lierc for corrélation purposes (Figs 1,2).
In thc sections examined, the microfauna has
been recovered from rhe deposirs of the
Kapusnica and Jaworki formations. Liihological
features, thickness and âge of these lithostratigra-
phical unies, distinguished by Birkenmajer
(1977, 1987), and Birkenmajer 6c Jednorowska
(1984) and presented below, concern only the
studied sections.
KaPIISNTCA l-OrU'tATKlN
This formation is subdivided in two members,
the Brodno Member and the Rudina Member,
both represented in the sections investigated.
The Brodno Member. Ir has been identified
only in the one section as a 40 cm thick layer of
black maris, ? upper Aprian in âge. The radiola-
rian launa is présent burver)’^ rare in these depo-
sits.
The Rudina Member. (1-20 m thick; lower-
upper Albian) It is represented by green-grey and
black maris and inarly shales with niarly liniesto-
ne imercalaiions, with red maris appearing in the
upper part. Abundant and well-prcserved radio-
larian skeletons are présent in green and black
maris and niarly shales.
JAWOKKI POKMAI'ION
Deposits of the Jaworki Formation hâve been
examined in sections belonging to ail Klippen
successions (Fig. 2).
The Brynczkowa Mari Member. (2-22 m thick;
Vraconian-middle Cenomanian) it consists of
green or grey-green maris with thin scarce red
mari inrercalation. Moderarely to poorly preser-
ved radiolaria are rare.
The Skalski Mari Member. (4-15 m thick;
middie-upper C^cuonvanian) It consisis of varie-
gaced maris, iniercalated with green, red and grey
maris. Hxcept of thc Altana Shale Bed, thc radio-
larians are présent in this member but are rare
and mosily poorly preserved.
The Altana Shale Bed. (0.4-3 ni thick;
528
GEODIVERSITAS • 1999 • 21 (4)
Radiolarian and foraminiferal biozonation in the Pieniny Klippen Belt
Fig. 1. — Location of the study ârea: A, In the Western Tethys {rectangle B) (map of late Cenomanlan palaeoenvironments after
Fourcade et ai 19&3; simplîfied); B. C. in the Carpathians (Pieniny Klippen Bell in black). D. in lhe Pieniny Klippen Belt. Legend. 1.
investigated outcrops; 2. symbols ot outcrops; 3. more important dislocations. List ot outcrops (from west to east): Sb, Stare Bystre;
Ki. Kietowy stream: Sz, Szaflary quarry, Lor Lorencowe Klippes: Csk, Czerwona Skaia, Zt, Ztobowy Creek; Nd. Niedziczanka
slream; Kos, Kosarz.yska Valley; McO Macelowa-Osice; Pg. Podskalnia Gôra ML Mag. Magierowa Klippe; Or. Orlica Hlll: Bw.
Bukowiny Valley: Bd. Bukowiny Hill.
Cenomanian/Turoniaiî boundary) h consists of
black-blue, grecnish and black shales and marly
shales. Radiolarians are abundant bur low-diver-
sified and poorly preservcd. Their pyritized ske-
Ictons are mostly found within the Czorsztyn
Succession deposits.
The Magierowa Mari Member. (9 m;
Cenomanian/Turonian boundar)^ Il is reprcscn-
icd by shales, marly shales, maris, and thin-bcd-
ded marly ümestonc of grey to green colour with
black alternations. Radiolarian fauna is abun-
GEODIVERSITAS • 1999 - 21 (4)
danc: wcll-preserved siliceous specimens are pré¬
sent in green and grcy shales and marly shales.
The radiolarians arc also abundant in black
shales but are often diftlcult to déterminé, becau-
sc of Fe-oxide coating and pyritization.
The Trawnc Menibcr. (5 m, lowcr-middle
Cenomanian) It consists of gre>'-grccn maris and
shaly maris with sandstonc intercalations.
Radiolarian fauna is scarce: only a few poorly
preserved specimens bave been found.
The Sneznîca Siltstone Member. (3-? 40 m;
529 I
B^k M. & B^k K.
Fig, 2. — Lithological columns of the studied sections in relalion lo the âge of deposits (dashed Itne cortesponds \o the
Cenomanian/Turonian boundary) and tbeir atlnbutton to Klippen successions and sedimenlary zones (Pieniny Klippen Basin recons¬
truction after Birkenmajer (1977)]. Lithological units invesligated |llthoslratlgraphy aller Birkenmajer (1977, 1987), Birkenmajer &
Jednorowska (1984)]: 1, Lorencowe Chert Bed; 2. Osice Siltslone Member; 3, Macelowa and Pusteinia Mari rnenibers 4, Trawne
Member; 5, Sneznica Siltslone Member, 6, Altana Shale Bed; 7, Magierowa Member; 8, Skalski Mari Member; 9, Brynczkowa Mari
Member; 10. Rudina Member: 11, Brodno Member; 12, Pieniny Limestone Formation. Scale bars: 5 m. except of Branisko
Succession sections, 1 m.
530
GEODIVERSITAS • 1999 - 21 (4)
Radiolarian and foraminiferal biozonation in the Pieniny Klippen Belt
middlc Cenomanian-middle Turoiiian) It is rcpre-
scntcd by altcrnating bright blue-grey and green
shaly maris widi thin-bcddcd slltstone and sand-
stone, and bright-grccn pclitic Ümcstonc intercala¬
tions. Radiohiriims arc raie in this nicmbcr, but
the upper Cenomanian deposirs arc cnriched in
wcll-preser\’cd, pyi iri/.ed radiolruian skclcron.
The Macelowa Mari Member. (15-70 m; lower
Cenomanian-iSantonian) Ir corisists nnjstly of red
maris and marly Jimesronc vvith thin intercala¬
tions of greenish or bltiish siltstones and sand-
stones which appcar in its lower and upper parts.
Poorly preserved and mainly calcified radiola-
rians are présent in this member. They are diver-
sified, especially those lound in a horizon
corresponding to the lower-middle Turonian.
The Pustelnia Mari Member. (6-45 m; middle
Cenomanian-Santonian) Ir consists of pure
brick-red, strongly lectonized maris wïthout clas-
ric intercalations. Radiolarian skcletons are vciy
scarcct poorly preservedt and maixily calcified.
The Lorencowe Chéri Bed. (3 m; upper
Santonian-lower Campanian) h is represented by
a two-meter-thick complex consistiiig of altema-
ting variegated maris (mostly red) wirh rhin
intercalations of lighr-green limestone.
Radiolarian skeletons are also scarce, poorly pre-
ser\’'ed, mostly calcified.
RADIOLARIAN ASSEMBLAGES
Seventy seven radiolarian species hâve been
determined from the Cretaceous deposics ran-
ging from lower Albian to Santonian of the
Pieniny Klippen Bclt. 20 gênera and 53 spedes
of Nassellaria, and 11 généra and 24 species of
Spumellaria were recognised (M. Bqk 1997).
The assemblages, in ail Klippen successions
mvestigated, are dominated by cryptoccphalic
and cryptothoracic Nassellaria belonging ro the
gênera Holocryptoaviiuni^ Hepiicryptocapsa^
Cryptainphorella. Dorypyle. Hiscocapsa^
Trisyringium and Squirtabollum, Multiscgmcntcd
Nassellaria arc also common being represented
by the gênera Dictyomitra, Thanarla,
Pseudodictyomitm^ Stichomitm, Xrtus, Obeliscoites
and Torculum. Spumellaria are less common; the
most abundant are the specimens belonging to
the familles Actinommidac, Pracconocar)'om-
midac, Xiphostylidac (gênera Staurosphaeretta
and Tviaciomii) y and Dactyliosphaeridae
{Diictyiîodisciis^ Godia and Dactyliosphaera).
Other Spumellaria bclong to the généra
Ilexapyrûniis^ Cavdspongla., Pseudoaulophacus,
Patellulû^ Paroniiella and CrucelLi.
Within the Klippen successions investigated, the
radiolarians are most abundant and diversificd in
the Czorsztyn Succession deposits (ourer shelf-
upper barhyal environment), becoming generally
scarce in the deposits of the Pieniny Succession
(lower bathyal environments, close to Calcium
Compensation Depth).
The radiolarian specimens are most abundant
and diverse in green and black marly shalcs,
maris and limestones ol the Kapusnica and
Pomied/nik formations, rhe Magierowa Member
and ihe Aliana Shale Bed of rhe Jaworki
Eorination. Thcy arc scarce in red and variegated
maris and shales of the Macdowa Mari,
Brync/kowa Mari and the Skalski Mari members
ol the Jaworki Formation. This itilght he dépen¬
dent on lirhology and iliagenesis factors respon-
sible for préservation of siliceous microfossils;
however, radiolarian fauiias radiarion and turn¬
overs could be also taken inro account. Both
causes might reflecr an ecological response of
marine biota to global cUmace and sea level
changes during mid-Crctaceous rimes.
Two great changes in the radiolarian assemblages
hâve been retorxied within the srudied deposirs:
1. Beginning of an important first radiation of
Radiolaria occurred during the middle Albian
{Ticmella priwula foraminiferal zone» K. Bijk
1992)' as maiiy new species had rheir first appea-
rance in the middlc and rhe lare Albian, The
maximum of différentiation in the radiolarian
assemblage is obsers^ed in the Vraconian deposits
(Rotalipara tidnensis through the Rotalipora
appennhiica-Plevwm<tlina huxtorfi foraminiferal
zones, K. Bijk 1998). Starting from the upper
part of the It appennimat-P. hiixtorfi foraminitc-
ral zone towards the Cenomanian/Turonian
boundary, a relative decrease in the number of
species occurred. As a rcsult, the radiolarian làu-
nas in the Czorsztyn, Branisko and Niedzica suc¬
cessions show great similarities. The same
GEODIVERSITAS • 1999 • 21 (4)
531
B^k M. & B^k K.
characteristic taxa from rhe Riborder Nassellaria
(both cryptorhoracic and cryptocep halle forms)
represented by the généra Holocryplocanium,
Hemicryptocapsa, Squinclbollum and Cryptam-
phorella arc the most abundant, svhilc the gênera
Dictyornitray Pseudodictyomiiray Thanarla,
Stichomitrity Toradumy atul Xitm arc also com-
mon.
2. The nexr change in radiolarlan assemblages
took place around ihe Cenomanian/Turonlan
boundary, Ir surted during the latc Cenomanian
(Rotalipora aishniani loraminiferal 7one, K. B;^k
1998). At that time, dic radiolarlan assemblages
from tire Picniny Succession becamc similar to
those from rhe Czorsztyn, Niedzica and Branisko
successions. Moreover, ir was enriched in formvS
described so iar only from the Silesian and the
Skole units of the Outer Flysch Carpathians
{Praeconnearyomma lipmanae^ Godia sp.,
Diacanthocapsa sp. — sec M. B^k 1994; Corka
1996).
FORAMINIFERAL ASSEMBLAGES
The early and middle VVlbian Foraminifera in the
Pieniny KJippcn Bcit represent a well-diversified
assemblage. Planktonk forms prcvail, being
represented by hedbergellids (//. dtdrioensisy
H. planispira and H. mnplcx)^ Glohgerinelloides
bentoneusis^ and ticincllids (Tidnella primnliiy
T robeni) (k. Bak 1992). Benthos fs dominated
by cakâreous forms with the most frequent
Gyroidimida inJhureMceay Gavcl/nella cenomam-
ca and G, interniedia^ and accompanied by
Denîalina sp., Nodosuria sp. and Latticidhja sp.
Agglutinated foraminifoa {predominantly infau-
nal forms) are infrequent in rhese deposirs, with
Dorothia gradata, Xpiroplecfinaîa annectemy
Tritaxüt gatdtma and Textularia foeda prevaillng.
The upper Albian planktonlc Foraminifera are
very numerous and more div'crsified. Besicles the
most frequent hedbetgellids, Bitidnella hreggien-
sisy PlanornitUna huxtfjrfiy Glabigerinelloides bento-
nesisy G, ultramicrciy praegiobotruncanids and
rotaliporids occur there. Bctuho.s i.s very rare,
dominated by calca^eou^s■ forms, similar to those
présent in the older assemblage.
A very similar assemblage is also characteristic of
the Cenomanian deposits; planktonic Foramini-
fera prcvail there. with dominating rotaliporids,
associated with représentatives of the généra
Pmeglo ho tru Haï fua Hedbergelht^ Wbile in ella ,
Glvbiga inellûidtSy HcteroheUx and Shuckoina.
Ratio of calcareous to agglutinated bcnihic forms
is different in pelagic and hemipelagic deposits of
this stage. Agglutinated taxa prcvail (more than
80% of benthos) in the scaglia rossa-type
(Macelowa Mari Member) and fivschoid deposits
(Trawne Member, Sneznica Siltstonc Mentber).
being dominated by Plectorecurvoides tiheruanSy
Recurvoides sp., Bidbohitcidites sp.. Trochamniina
sp., Haplophragtnoides sp.. Spiroplecuimminn
naparroanriy Arcmlndimina predii, Dorodva sp.,
Triittda sp., Glomospira sp., and by tubular fi^rms.
Calcareous forms are more frequent in variegated
and red pelagic maris (Brynczkowa Mark Skalski
Mari and Fustelnia Mari membets). However,
they are represented by single specimens only.
Agglutinated foraminifers indude the généra
Dentalindy Nodosariay Triitix, Lenticulina,
MarginulinopnSy Mnrginulinay SaYUcenariUy
AsîiUùlus. Planulariity Globulinay OolinUy
Pyridimu Rantfdimy huebulimmay P/eurostorneP
la y ValvH U n e ria , Pu lU n ta » (ha ng u la riuy
GyroidinoideSy Gavelinellay Lingulognvelindla and
Fpnnides.
A quilc different foraminiteral assemblage
appears in black shale faciès close to the
Cenomatiian/Turonian boundary. Planktonic
Foraminifera are still frequent in the lower part
of the shales, being represented predominantly
by Rotalipora cushmanh they are accompanied by
whiteinellids, praegiobotruncanids, hedbergeilids
and single form.s from the généra Globigerinel-
loules and Heterohflix. In a higher pari ol the
shales, only single forms’ of Praeglohotruncana
delrioensis and Hedbergella detrioensis bave heen
found. Benthonic forms are dominated by very
frequent Lenticulina gaultiria. Tliis form is
accompanied by single specimens of agglutinated
foraminifera from the généra BulhobaculiteSy
'['rochamminta HarmosinUy Glomospira, Ammo-
disais and Rhizammhia.
The middlc-laïc Turoniaii foraminifcral assem¬
blage considcrably difters from the Cenomanian
one. Middle furonian was the acme of Helveto-
glohotruncana helvetica and H. praehelvetica
532
GEODIVERSITAS • 1999 • 21 (4)
Radiolarian and foraminiferal biozonation in the Pieniny Klippen Belt
which characterise this assemblage, while ben-
ihonic forms are almost absent. Durlng che late
Turonian, bcnihonic forms bccorae more fre¬
quent, and they prcvail in the latest Turonian
deposiis. rhc bcnthos is dominatcd by aggluti-
nated taxa (more than 90%) with vcty characte*
ri.stic Uvigertnammina jankoi^ Recurvoides
gnduleytsis. GerochitJnmina Cütivena, Kiirrerul'tna
canijonnis, Huplophragmoides c£ bulloides and
Bulhohamlites problematims. Calcarcous benthos
is represented predominantly by the généra
Eponides^ Stensioema and Gyroidinoides.
RADIOLARIAN BIOSTRATIGRAPHY
Radiolarian spccics wcrc idenufied in more than
200 samples from 18 sections in the deposits of
the Pieniny, Branisko, Nicdzica and Czorsznm
successions of the Pieniny Klippen Belt (M. B^k
1997). Scvcntccn horizons containing abundanr
and well-prcscrvcd Radiolaria hâve been chosen
for doser analysis (M. B^k 1999); the Bio-
Graph 2.02 computer program (Savary & Guex
1991) based on the Unitary A-Ssociations Method
was applied. This program produced a scqucnce
of 1 1 U. A. (Hig. 3), which wcrc used for
construcring a radiolarian zonal standard
(M. Bqlc 1999). Three radiolarian zones and five
subzones were proposed for the early Albian
dtrough late Turonian rime span (Fig. 3). These
arc: (1) the Holoayptocttnium barbui zone wilh
Stichornitra Tosilen.sis^ Squinahollum fossile,
Thauitrlü veneUi^ Torcubon dengoi and Oheliscoises
maximus subzones; (2) the Hemicryptoatpsa pre-
polyhedra zone; (3) die Hemwryptoaipsa palyhedm
zone, The top of each zone and subzone is defi-
ned by the FAD of ihe index taxon and aiso by
the base of the overlying zone.
FORAMINIFERAL BIOSTRATIGRAPHY
Extensive biostratigraphical studies based on
planktonic foraminifera were carried out in
Cretaceous deposirs of the Polish pan of the
Pieniny Klippen Belt (Alexandrowicz 1966;
Alexandrowicz er 1968a, 1968b; Jednorowska
1979; Gasihski 1983, 1988; Birkenmajer &
Fig, 3. — Occurrence range chan ot index radiolarian apecies
recorded In the Albian to Coniacian deposits in the Pieniny
Klippen Bell successions, based on their first and the last
appearances. and their co-occurrence based on the Unitary
Associations. Abbreviations ot zones: S. tosaensis. Stichomitra
fosaensrs; S. fos., Squinabollum fossile; T. pulch., Thanajia
pulchra, O. maxim,, Obeliscoites rnaximus. 1, local planktonic
foraminiferal zonation atter Robaszynski & Caron (1985) modi-
fied by K. t3a> (1992,1998),
Jednorowska 1987; Kostka 1993). The local bio¬
zonations hâve been tied to the zonal standards
of the Western Tethys.
GEODIVERSITAS • 1999 • 21 (4)
533
B^kM. &B^k K.
The local planktonic biozonation hcre présentée!
(K. B^îk 1992, 1998), is based on studies of
18 field secrion.s (more than 270 samples) repre-
senting deposits from ail sedirnentary zones ol
the Pieniny KÜppen Basin in Roland. The zones
distingnished and their chmnostratigraphic cali¬
bration, correspond very well with the Medi-
terranean zona! standard as pioposcd by
Robaszynski Sc Caron (1995), with only minor
révision (for more details, see K. B^k 1998).
The biozonation based on agglutinaced foramini-
fera foUows that proposed for Outer Carparhians
by Geroch & Nowalc (1984), and applied aiso to
the Pieniny Klippen Bclt (K, B^k ei al. 1995).
CORRELATION OF RADIOLARAN
ZONATION WITH PLANKTONIC AND
AGGLUTINATED FORAMINIFERA ZONES
Varions radiolarian zonations for the latc Cieta-
ceoLis deposits were proposed depending on the
area concerned. Tw'O proposed standards calibra-
ted with chronostrâtigraphy in the western part
of the Tethys deserve spécial aaention. d’he first
standard was proposed by Llumitricâ (1975) for
the Romanian C'arpachians. Hc rccognised two
radiolarian assemblages, the oldei assemblage
and the younger one correlatcd with planktonic
foraminifcr-a. The Holoçryptocaniam barbui-
H. tuberadiitum assemblage corresponds, accor-
ding to L'iiimitrica (I975}> to the Rotalipora
reicheli-R. ci^diwaai7.ont (latest Cenomanian).
O’Dogherty’s (1994) standard was more dctailcd
and compriscd a calibration with the Northern
Apeninnes and Beric Cordillera. l'hLs calibration
bas been based on planktonic Foraminifera par-
tially following the zonal standard as proposed by
Caron (1985), with some modifications.
O’Dogherry (1994) recognised five radiolarian
zones correlated with the HedbergeUa
(Barremiari) through the Marginommeana sigali
(late Turonian) foraminiferal zones.
In this study, wc propose a corrélation of radiola¬
rian zones with planktonic and agglutinaced fora¬
miniferal zones for the early Albian rhrough late
Turonian time span, for the PoHsh part of the
Pieniny Klippen Belc (Fig. 4).
d'he définition ol the Holocryplocanium barhui
zone used in this zonation lollows that of
Schaaf’s (1985)., with some modification of its
upper limit. The lower boundary of H. hnrbui
zone {- lowcr boundary of the Stichornitra
tûsaensh subzone) is not wcil defined, because the
eailicst iAlbian and larest Aptian ( Ticinella wbeni
planktonic loraminifetal zone and Haplo-
pbritgnioldes nonioninoides agglutinated loramini-
leral zone) deposits arc not well represented in
the sections investigated, their radiolarian fuuna
is rare and poorly preserved. d'he upper bounda-
t)'- ot the H. barhui zone hdls wirhin a lower part
of the Rotalipora reicheli planktonic foraminiferal
zone and tbc Bulbohaadite^ problrmaticus agglu-
tinafed foraminiteraJ zone (middle Ceno¬
manian). The Sipdnahollum fossile radiolarian
subzone coiucîdes with the Biticinella bfrggiensis
foraminiferal zone (Late Albian). The Thanarla
pulthra subzone coincide.s with the Rotalipora
tkinemis-R. subtidnertsis forajninifcral zone (laie
Albian). ITc lower limit of the Toradnw deiigoi
subzone correlates with the upper boundary of
the Ratalipora tiànvnsiS'R. suhtiçinemis foramini¬
feral zone. Its upper limit correlates with the
upper boundary ot the Rotalipora appenaimea
foraminiferal zone (Albian/Cenoinanian bounda¬
ry), and also coïncides with the lower limit of the
Obeliscoües maximus subzone.
The lower boundarv' of ihe Hemicryptocapsa pre~
polyhedra zone corresponds to a lower part of the
Rotalipora reicheli planktonic foraminiteral zone
(middle Cenomanian). Its upper boundary
(= lower boundary of tlîc Pîtrnscrypîovapsa poly¬
hedra zone) corresponds to an upper pan of the
R, cushmani planktonic foraminiferal zone (latc
Cenomanian). I be upper boundary of the
H. polyhedra zone bas not been defined within
the deposits itwestigated because the Radiolaria
from the latest Turonian and the Coniacian are
very poorly preserved (mosrly calcified). This
zone correlates with the Rotalipora cn^hrnani
through Dicarinella y>r;w/oW planktonic fbrami-
niferal zones (■= upper part ol Bulhohaculites pro-
hlematicus and lowcr parc of Uvigerinarmnsna ex
gf. jankoi agglutinated foraminiferal zones; late
Cenomanian through late Turonian).
It îs hoped that the proposed radiolarian zonal
standard will bccome a calibration tool to whicb
534
GEODIVERSITAS • 1999 • 21 (4)
Radiolarian and foraminiferal biozonation in the Pieniny Klippen Bell
STAGES
LOCAL PLANKTONIC
FORAMINIFERAL
ZONES (1)
LOCAL
BENTHONIC
FORAMINIFERAL
ZONES (2)
RADIOLARIAN
ZONES AND SÜBZONES
M. Bak, 1999
!9oH
Turonian
Cenomanian
iooH
■ 110 ^
H
4
Albian
Dicarinella primitiva
Marginotruncana sigali
Helvetogtobotruncana
helvetica
Praeglobotrvncana delrioensis
Rotalipora cushmani
Roi.ilipora giùü!ihr4fr,eii^s
Uvigerinammina
ex gr. jankoi
Bulbobaculites
problematicus
Rotalipora reichell
Rotalipora
globotruncanoides
R appenninica —
- R.appen.^ P.buxt.
R buxtorfi-R. ticinensis _
R.ticinensis-R.subticinensis
Biticinella breggiensis
Plectorecun/oides
alternans
Ticinella
primula
Haplophragmoides
nonioninoides
Ticinella
roberti
Hemicryptocapsa
polyhedra
zone
Hemicryptocapsa
prepolybedra zone
Obeliscoites maximus
Torculum dengoi
Thanarla pulchra
Squinabollum fossile
Stichomitra tosaensis
Fig. 4. — Corrélation of radiolarian biozones and subzones with planktonic and agglutinated Foraminifera zonations in the Pieniny
Klippen Belt. PoHsh Carpalhians (chronologicat scale after Robaszynski & Caron (1995)]. 1, local planktonic foraminiferal zonation
after Robaszynski & Caron (1985) modified by K. B^k (1992. 1998): 2. local benthonic foraminiferal zonation after Geroch & Nowak
(1984) modified by K. Bak étal. (1995). K Bak (1995a).
local zonations from orher Carpathian régions
could bc correlated.
Acknowledgements
The authors are greatly indebted to Prof. K.
Birkenmajer (Institute of Geological Sciences,
Polish Academy of Sciences, Krakow) for
vainable éditorial commcnts. Particular thanks
are due to Prof M. Caron (Institut de Géologie
de rUniversité, Fribourg) and Dr. P. Dunikrica
(Institut de Géologie et Paléontologie^ Université
de Lausanne) who tcvised the manuscript. Mrs
1. Chodyri (Institute of Geological Sciences,
Jagiellonian University, Krakow) helped us in the
laboratory part of the work. This research is a
GEODIVERSITAS * 1999 • 21 (4)
535
B^kM. &B^k K.
contribution of the IGCP 362 Project, Tethyan
and Boréal Cretaceous.
REFERENCES
Alexandruwicz S. W. 1966. — Stratigraphy of ihe
middle and tipper Cretaceous in the Polish part ol
the Picniny Klippen Bell. Zeszyty Naukowe
Akademii Gôrtnczo-Htimiczej 157 fRozpraw)’ 78):
M42.
AJexandfowic?. S. W., Rirkenmajer K., Schcibner E. bc
Scheibnerova V. 1968a. — Comparison of
Cretaceous strarigraphy in the Pieniny Klippen Belt
(Carpaihians). 1. Gcosynclinai 1 urrow. Bullefm de
l'Académie Polonaisv de!> Sciences, Série des sciences,
Géoloy^ieet Géogrnjihu' 16 : 77-84.
— 1968b. — Cà^mparison of ('reiaceoas snatigraphy
in the Pieniny Klippen Belt (Carpathians).
II. Northern Ridge, Bidlctin de /‘Acadéviie ptdmnuse
des Sciences, Série des sciences, GcnloGe er Géographie
16:85-90.
B^k K. 1992. — Albi.in and Ccnomariian bkwtraii-
graphy and palacoccology în rhe Brani.sko
Succe.ssion at Srarc Bystre, Pieniny Klippen Bell,
Carpathians. Bulletin of the Polish Academy of
Sciences, Eanh Sciences 107-113.
— 1993. —Albian tu early l uronian Flysch-flyschoid
deposits in the Branisko Succession at Kietowy
streani, Pieniny Klippen Belt, Carpathians. BuUechi
ofthe Pûlish Academy of Sciences, Eanh Sciences 41:
1 - 11 .
— 1995a. — Sti'atygrafia i paleoekohgia osadoio ogni-
wa margli z Macelowej i ogniwn margli z Pustelni w
polskiej cz^icî piemhskiego pasa skaîkoivego.
Unpnblished PhD I hcsis, Instinite of Geological
Sciences, Jagiellonian Univçrsity 145 p- fin Polish].
— 1995b. — Age and paleoecology* of ihc npper
Creraccous red deep-waeer deposits in rhe Ik'îlish
part ol rhe Pieniny Klippen Befr: 13, hi Programme
and AhsCrncts of Annual Assemhly of IGCP Project
No. 362, Tethyan and Boréal Cretaceous, Maa.s-
trîcht. the Nedcrlands, September 17-18, 1995-
— 1998, — ï'oraniinifcral bio.stratigraphy of the
uppex Crctaccous red deep water acpo.sits in the
Pieniny Klippen Belt, Carpathians, Polaad. Sludia
Geohgica Poumica 111; 7-95.
Bqk K.. Btik M,. Gasiiiski M. A. 6c [aminski J.
1995^ — Rio.siraiigraphy tif Albian to Turonian
deep-warcT agglutinât^ loraiTiinifeiu calibrared by
planloontc tbr.iminifera. Ridiolaita. and dinoflagel-
late cyst.s in ihe Pieniny Klippen Bell, Polish
Carpathians, in Kaminski M. À., Geroch S. ÔC
Gasiriski M. A. (eds), Pr&ceedings of the ’îth
înternatiurutl Worksbop on Agglutinated Fora-
minift'ra, Krakdvv» Poland, September 12-19, 1993.
Grzybowski Foundation, Spécial Publication 3:
13-27.
Btik M. 1993. — l.ute Albian-carly Cenomanian
Radiolaria from rhe Czonszryn Succession, Pieniny
Klippen Belt, Carpathians. Studia Geologica
Polonica 102: 177-20'^.
— 1994- — Radiolaria from Cenomanian deposits of
the Silesian Nappe near Sanok, Polish Carp.ithians.
Bulletin of îhe Polish Academy of Sciences, Eanh
Sciences 42: 1 45-153.
— 1995. — Mtd Crctaccou.s Radiolaria from the
Pieniny Klippen Belt. Carpathians, Poland,
Cretaceous Research 16: 1-23.
— 1996a. — Cretaceous Radiolaria from the
Niedzica Succe.ssion, Pieniny Klippen Belt. Polish
Carpathians. Acta Palcontologira Polonica 41:
91-110-
— 1996b. — Rare Crctacenns Radiolaria fronl the
Czorszryn Succession, Pieniny Klippen ReU, Polish
Carpathians. Studia Geologica Polonica 109: 69-85.
— 1997- — Radioiaritin assemblage and radiohrian
biüzonarion of the Cretaceous deposits rn the Polish
part of the Pieniny Klippen Belt. Unpublishcd PhD
Thesis. Instirute of Geological Sciences Jagiellonian
Universlty, 146 p.
— 1999. — Mid-Cretaceous radiolaiian zonation in
the Polish parc of the Pieniny Klippen Belt
(Carpathians), Geologica Carpathica 50: 21'31.
Birkenmajer K. 1977. — Jurassic and C’retaceous
lirliostratigraphic unies of rhe Pieniny Klippen Belt,
Carpathians, Poland. Studia Geologiea Polonica 45:
1-158.
— 1987. — The Trawne Membcr (upper Albian-
üpper Cenomanian). A flysch des^elopment in the
Branisko Nappe, Pieniny' Klippen Belt, Car-
parhian.s. Studia Geologim Polonua 92:29-40,
Birkenmajer K. & (iasifiski M, A. 1992. — Albian
and Cenomanian palaeobathymeTty in the Pieniny
Klippen Belt Basin, Polish Carpathians. Cretaceous
Research 13: 479-485.
Birkenmajer K. & (ednorovvska K. 1984. — Upper
Cretaceous stratigraphy in the Pieniny Nappe at
Sromowce Niine. Pieniny Klippen Belt (Car¬
pathians, Poland), Studia Geologica Polonica 83:
25-48.
— 1987. — l ato Crerateous faraniiiideral biostrati-
graphy of the Pieniny Klippen Belt. Carpathians
(Poland). Studia Geologica Polonica 92: 7-2"",
Birkenmajer K., Dudziak J. tU. |ednorov\ska A.
1979. — Wglebna budowa geologlczna pélnocnej
strefy dysiokacyjncj piciiiûskiego pasa skalkcrwego
\v Szczawnlcy. Stiulin Geologica Pohmea 61; 7-36.
Caron M. 1985. — Cretaceous planktonic foramini-
Icrâ: 17-86, ht Bolli H, iV!.. Saunders J- B. Ôi
Perch-Nielsen K. (eds), Plankton Stratigraphy.
Cambridge University Press. C’ambridge.
Dudziak J. 1985, — Stratigiaphy ofthe upper
Crcraceou-s md PaJaeogene deposits of the Pieniny
Klippen Belt and its surrounding based on calca-
reous nannoplankton. Annales Societatis
Geologorum Poloniae 55: 251-271.
536
GEODIVERSITAS • 1999 • 21 (4)
Radiolarian and foraminiferal biozonation in the Pieniny Klippen Belt
Dumitrica P. 1975. — Ccnomanian Radiolaria at
Podul Dimbovitci: 87-89, in Micropaleontological
Guide to the Romanian Carpathians, l4th European
Micropaleontological Colloquium^ Remania. Institute
of Geology & Geophysics, Bucharest.
Fourcade E., Azema J., Cececca F., Dercourt J.,
Vriclynck B., Belllon Y., Sândulescu M. & Ricou
L. E. 1993. — Late Cenomanian Palaeoenvi-
ronments (94-92 Ma), in Dercourt J.. Ricou L. E.
& Vrielynck B. (cds), Atlas Tethys Palaeoenviron-
mental Maps^ Explanatory notes. BEICIP-
FRANLAB, Rueil-Malmaison, France.
Gasinski M. A. 1988. — Foraminiferal biostradgra-
phy of Albian and Cenomanian sédiments in the
Polish part of the Pieniny Klippen Belt, Carpathian
Mountains. Cretaceous Research 9: 217-247.
Gcroch S. & Nowak W. 1984. — Proposai of zona¬
tion for the latc Tithonian-late Eocene, based upon
arenaceous Foraminitera from the Ourer
Carpathians, Poland: 225-239, in Oertli H. J.
(ed.), Benthos B3; 2nd International Symposium on
Benthic Foramtnifera, Pau (France) April I Î-Î5y
1983. Elf Aquitaine, ESO REP and TOTAL CFP,
Pau & Bordeaux.
Gorka H. 1996. — Cenomanian Radiolaria from
Splawa, Polish Carpathians. Geological Quarterly
40: 555-574.
Jamihski J. 1990. — Dinoflagellate cysts assemblages
from the Pomiedznik Formation of the Pieniny
Klippen Belt (Carpathians, Poland). Stuifmaily
Utrecht^d): 17-21.
Jednorowska A. 1979. — Microfauna and âge of the
Malinowa Shalc Formation, upper Cretaceous, in
the Pieniny Klippen Belt or Poland. Studia
Geob^ca Polontca 61: 57-7(y.
Küstka A. 1993. — The âge and microfauna of the
Maruszyna Succession (upper Cretaceous-
Paleogene), Pieniny Klippen Belt, Carpathians,
Poland. Studia Geologica Pobnica 102: 7-134.
O'Dogherry L. 1994.— Biochronology and paleonro-
log)' of Mid-Cretaceous radiolarians from Northern
Apennine^ (Italy) and Betic Cordillera (Spain).
Mémoires de Géologie (Lausanne) 2 L 413 p.
Robaszynski F. & Caron M. 1995. — Foraminifercs
planctoniques du Crétacé : commentaire de la
zonation Europe-Méditerranée. Bulletin de la
Société géologique de France 6 : 681-692.
Savar)'J. &r GuexJ. 1991. — BioGraph : un nouveau
programme de construction des corrélations bio-
chronologiques basées sur les a.ssociations unitaires.
Bulletin de la Société vaudoise des Sciences naturelles
80:317-340.
Schaaf A. 1985. — Un nouveau canevas biochronolo¬
gique du Crétacé inférieur et moyen : les biozones à
radiolaires. Bulletin des Sciences géologiques
(Strasbourg) 38 : 227-269.
Submitîed for publication on 1 April 1998;
accepted on 18 February 1999.
GEODIVERSITAS • 1999 • 21 {4)
537
Early Norian Radiolaria from Cyprus
Nikita Yu. BRAGIN
Geological Institute, Russian Academy of Sciences
Pyzhevsky 7, 109017 Moscow (Russia)
bragin@ginran.msk.su
Kirill A. KRYLOV
Geological Institute, Russian Academy of Sciences
Pyzhevsky 7, 109017 Moscow (Russia)
krylov@ginran.msk.su
kirka@geo.ifaran.ru
Bragin N. Yu. & Krylov K. A. 1999. — Early Norian Radiolaria from Cyprus, in De Wever P.
& Caulet J.'P. (eds), InterRad VIII, Paris/Bierville 8-13 septembre 1997, Geodiversitas 2^
(4) : 539-569.
KEYWORDS
Radiolaria,
systemacics,
1 riassic,
Norian,
Cyprus.
ABSTRACT
Lower Norian limestones from the Mamonia Complcx, sourhwcstern
Cyprus, are characterized by diverse radiolarian assemblages. New taxa are
described: Bulbocyrtium famm n. sp., Caphtorocyrtium tenerum n. gen., n. sp.,
Capnuchosphâera theloides minor n. ssp., Haeckelicyrt'mm (?) carterae n. sp.,
Kinyrosphaera trispinosa n. gen., n. sp., K. heücata n. gen., n. sp., Naholella
trispinosa n. sp., Whalenella robusta n. sp., and Xiphotheca (?) spinellifera
n. sp.
MOTS CLÉS
Radiolaires,
systématique,
Trias,
Norien,
Chypre.
RÉSUMÉ
Radiolaires du Norien inférieur de Chypre.
Des calcaires du Norien inférieur de la formation de Mamonia, sud-ouest de
Chypre, sont caractérisés par divers assemblages de radiolaires. De nouveaux
taxons sont décrit.s : Bulbocyrtium latum n. sp., Caphtorocyrtium tenemm
n. gen., n. sp., Capnuchosphaera theloides minor n. ssp., Haeckelicyrtium (?)
carterae n. sp., Kinyrosphaera trispinosa n. gen., n. sp., K. heücata n. gen.,
n. sp., NabolelLi trispinosa n. sp., Whalenella robusta n. sp. et Xiphotheca (?)
spinellifera n. sp.
GEODIVERSITAS • 1999 • 21 (4)
539
Bragin N. Yu. & Krylov K. A.
INTRODUCTION
The presence of Radîolaria in the Triassic sedi-
mentan' rocks of Cyprus was indicated by many
previous investigaiors (Lapierre 1975; Robertson
ik Woüdcock 1979: Swarbrick & Robertson
1980). Altfiough these fossÜs are abondant and
well preserved, there is no systematic study of
thcm. Assemblages of the upper Norian were
only illustraced before (Bragin & Krylov 1996).
This Work deals with the diverse lower Norian
fauna, which includes many undescribed taxa.
Previous investigaiors described diverse Carnian
and Norian radiolarian assemblages from Sicily,
Greece and Turkey (De Wever er ni 1979),
Austria (Kozur & Mostler 1972; 1979; 1981;
Lahm 1984), Croacia (Halamic & Gorican
1995), Japan (Yao 1982; Yoshida 1986;
Sugiyama 1997), -western North America (Blomc
1984; Yeh 1989), l’hilippincs (Yeh 1990), castern
Russia (Bragin 1991). The Carnian to Norian
stratigraphie Litterval was subdividcd inco radio¬
larian zones and subzones in the régions of
Circum-Pacific belt (Yao 1982; Blome 1984;
Bragin 1991; Sugiyama 1997), There are still no
such subdivisions for the Mediterranean région
and the stratigraphie ranges of numeroiis taxa
remain uncerrain. The description of well-dated
and extremely diverse radiolarian assemblages
from Cyprus will givc supplemcntary data for
further rcscarch in the Triassic bioscratigraphy as
well as in tlie taxonomy and évolution of the
Triassic Radiolaria.
GEOLOGICAL SETTING
The Triassic of Cyprus was subdivided into rwo
units: sedimentary and volcanogenous with sedi-
mentary intercalations (Lapierre 1975).
Swarbrick & Robertson (1980) defined two
important parts ol the Mamonia Allochtiionous
Complex-scdimcntary Ayos Photios Group
(MiddJe Triassic-Early Cretaccous) ;md volcano¬
genous Dhiarizos Group (Upper Triassic-
Jurassic) (Fig. 1). Borh these groups arc
incorporared into complicated allochthonous
structures. The detached blocks of the Ayos
Photios and Dhiarizos groups are common in the
varlous mélangés of the Mamonia Complex.
The formations of the Mamonta Allochthonous
Complex hâve wide disiribuiion acar Agia
Varvara Village, southwestern Cyprus (Fig. 1).
T’his area bas an imbricated structure complica¬
ted by a .System of sublatitudinal and NW-tren-
ding srrike-slip fruits. The lowetmost structural
unit is composée! uf the terrigenous mélangé
with blocks derived both from the Troodos
Complex and Mamonia Complex. They are
overthrusted by sériés of allochthonous unies that
are represenred by (Fig. 1 );
1, SerpcncinUe mélange with blocks of Troodos
lavas;
2, Nappe composed of Agia Varvara mecamor-
phics: amphibühtes and quartz-mica shists;
3, Serpentinire mélangé with blocks derived both
from the Mamonia Complex and Troodos
Complex;
4, Nappe composed of Dhiarizos hasic lavas with
limestone intercalations (Upper Triassic to Lower
Cretaccous),
3. Nappe of Ayos Photios sedimentary group
represenred by the Upper Triassic clastics (Bragin
k Krylov 1996) and the Middle Jurassic to
Cretaccous cherts, mudstones, calcarenites and
sandstoncs.
The blocivs of sedimentary rocks were studied in
the field ol terrigenous mélangé located at
34°45’N, 32°30’E. One of such blocks consists
ol white and pink plary niicritic limestones with
intercaUtion.s of grcy and ycTlowish-pink cherts
with observed thicknes.s 14 m (Fig l).This
limestone block is interpreted as a sedimentar)'^
Icasc derived from the Triassic part ol Dhiarizos
Group. This conclusion oui bc supported by rhe
fact that thèse limestones did noc contain clastic
intercalations that are commun for the carbonate
sédiments of the Ayos Photio.s Group (Swarbrick
& Robertson 1980; Bragin & Krylov 1996).
Lirnesrones and cherts contain abundanr radiola-
rians replaccd by ealcuc and recrysiallizcd. Only
onc sample yicldcd radioiariaos replaccd by pyri¬
te. The pyrirized radiolaaians exhibit well-preser¬
ved morphological featurcs. The radiolarian
assemblage is characterized by high taxonomie
diversity. Radiolaria are represenred by tlic iollo-
wing taxa: Annulotriassocampe sp. cf. A. sulovensis
540
GEODIVERSITAS • 1999 • 21 (4)
Early Norian Radiolaria from Cypms
Fig. 1. — Geological position of the Upper Trlassic radiolarian-bearing limestones in the southwestern Cyprus. I, map showing
generalized geological position of the Mamonia Allochthonous Complex in the southwestern Cyprus; II. geological map of the Agia
Varvara area (Loc.. position of studied limestone block); 111, geological section A-B. Legend; 1, Troodos Complex; 2. Mamonia
Allochthonous Complex; 3. Cer\ozoic sédiments; 4, Ayos Photios Group (Upper Triassic^lretaceaus]; 5. serpentinite mélangé with
Troodos blocks; 6, Agia Varvara metamorphics; 7, Dhiarizos Group (volcanics with limestone intercalations, Upper Triassic-Lower
Cretaceous); 6, serpentinite mélangé with Mamonia blocks; 9, terrigenous mélangé; 10, boundaries; a, stratigraphie; b, tectonic.
GEODIVERSITAS • 1999 • 21 (4)
541
Bragin N. Yu. & Krylov K. A.
(Kozur & Mock, 1981). Archaeacenosphaera sp.,
Biilbocyrtium latum Bragin n. sp., Caphtorocyr-
tium tenerum Bragin n. gtn., n. sp., Capnodoce
ruesti Kozur & Mock, 1981, Cuptutchosphaera
deweveri Kozur & Mostler, 1979. C sp. cf.
C. deweveri Kozur hc Mosrlcr, 1979. C theloides
minor Bragin n. ssp., C sp. cl. C theloides De
Wever, 1979, C. sp. aff. C. curpathica Kozur &
Mock, 1981. Capnuchosphacridac n. gen.. sp,
indet., Citrinaheliosomd carinatd (Kozur Ôc
Mostler, 1979), Entdctimnphaerü sp. aft. E. simo-
ni Kozur ^ Mostler, 1979. E. (?) sp. 1. E. (?)
sp. 2, Ferresiitm sp. afh E vonclusum Carter,
1993, Forenuineltina (?) sp., Haeckelicyrtium car-
terae Bragin n. sp., Heliosoma (?) riedeli Kozur &
Mostler, 1981, Heliosoma (?) sp., lcrioma remtn-
cistrum De Wever. 1979, L sp. aff. /. ictrands^
trum De Wever. 1979. KahUrosphuera aspinosrt
Kozur & Mock, 198!, K. nortca Kozur àc
Mostler. 1979, Ktmnnpongetlej hhphiosa Kozur &:
Mostler, 1981, KinyTcnphaeyd trispinosa Bragin
n. gen., n. sp., K, hdkatu Bragin n. gcn., n. sp.,
Kinyrosphaera (?) sp., Laxtomm (?) sp., Liasso-
saturnalis pttrvus Kozur & Mosrlcr, 1990, Loffa
(?) sp., MuhmortilispulehcrYchy 1989, Nabolella
trispinosa Bragin n. sp , Napora (?) sp. \,N. sp. 2,
Neopylentouemn sp. aff N. prneera Sugiyama,
1997, Palaeosatiirnalis triassicus (Kozur &
Mostler, 1972), î\ laiiannulatus Kozur &
Mostler, 1983, E rnneki Kozur & Mosrier, 1983,
Paronaeila nortca Kozur & Mock, 1981,
Paronaella sp,, PrntactjnocarpHs sp. aff P tetrO'
canthus Dumirrica, 1978, Pentactinocarpus sp.y
Praemesosaturnalh sp. cf. P. multidematus (Kozur
& Mostler, 1972), Pentaspon^disens 1, P sp.
2, Poulptis piahyx De Wever, 1979, Pseudo-
saturniforrna carnica Kozur & Mostler, 1979,
Praenanina veghne ]LtyL\x\y 1994, Praenrhiculi-
formella goestlingensis Kozur 6l Mostler, 1978,
Pseudostylosphacra (?) sp., Sürla (?) sp.. Sepsagon
sp., Sethticapsû sp., Spongostylus carnicus Kozur &
Mostler, 1979, S. tortilis Ko/.wx ôc Mostler, 1979,
Sulovella constricta Kozur 6c Mock, 1981,
Syringocapsa batodes De Wever, 1979,
Syringocapsa sp., Trialatus robtisUts (Nakaseko &
Nishimura, 1979), Triassohipedis (?) sp.,
Triassocampidac n. gcn., sp. indet., Triassocru-
cella triaisica (Kozur & Mostler, 1978),
Veghicyclia sp. cf. V. robusta Kozur & Mostler,
1972, Vinassaspongus transitas Kozur 6i Mock,
1981. Whalenella sp. alf. U'( perfecta (Blojne,
1984), W. robusta Bragin n. sp., Xiphotheca rugo-
sa Bragin, 1991, X. longa Kozur & Mock, 1981,
X. (?) spineltifera Bragin n. sp.. Xiphotheca sp.,
Xiphotheca (?) sip., Zhamojdasphaeraproceruspino-
sa Lahm, 1984. AU rhesc radiolatians corne trom
a single samplc,
l’Iic early Norian age ol thîs assemblage is confir-
med by tlic présence of conodoiits Epigondolella
spatulata (Hayashi) and such radioJariao taxa as
Capnodoce rucsli, Sulovella constricta and
Vinassaspongus transitas. Radiolarian assemblage
is typical For dte Capnodoce ruesti (Kozur &
Mo.stler 1994) wiih .somc cxccpiioits. Sonic .spe-
cics wcrc known only from Carnian or older
deposits: Karnospongella bispinostu Praenanina
veghae^ Spotigostylus carnicus. T he locality from
Cyprus may represent a latcst occurrence of these
taxa.
SYSTEMATICS
Subclass IIADIOLARIA Millier, 1858
Order POLYCYSTINA Ehrenberg, 1838
Suborder SPUMELI ARIA Ehrenberg, 1875
Superfamily HFXASTY1.ACKA Haeckel, 18(S2
Family En lACnNllDAE Ricdcl, 1967a
Geniis Entactinosphaera Foreman, 1963
Type SPECIES. — Entactinosphaera esostrongyla
Foreman, 1963.
Entactinosphaera sp. aff E» simoni
Kozur & Mostler, 1979
(Fig. 30
alT. Entactinosphaera ’i simoni Kozur & Mostler, 1979:
72, pl. 4, fig. 5; pl. 7, fig. 2; pl. 8, fig. 1. - Lahm
1984: 17, pl. 1, fig. 10.
Occurrence. — Lower Norian of Cyprus.
Descri prroN
Small sphericaJ shell with six symetrically arran-
ged spines, four of them in the same plane.
Spines long, robust, Y-shaped. Cortical shell one-
542
GEODIVÊRSITAS • 1999 • 21 (4)
Early Norian Radiolaria from Cyprus
layered, with prominent pores in irregular hexa¬
gonal to pentagonal pore frames.
Rf.marks
This form differs from E. simoni Kozur &
Mostler by more spherical cortical shell with
robust spincs.
Entactinosphaera (?) sp. I
(Figs 2H, 3F)
Description
Shell spherical with four three-bladed spines
lying in one plane. Distal parts of spines some-
timcs display small sinistral torsion. Shell with
subspherical pores rhat arc variable in size and
cnclosed in rectangular pore frames with promi-
nenc nodes at vertices. Shell surface sometimes
with small thin secondary spines.
Remarks
Akhough the external morphology is well preser-
ved, the inner structure is uncertain. These forms
are assigned tentatively to genus Entactino¬
sphaera.
Entactinosphaera (?) sp. 2
(Fig. 3A)
Remarks
Uncomplete specimen with visible inner shell
illustrated. Nevertheless, che internai spiculé can-
not be observed due to the préservation (replace¬
ment by pyrite).
Family SepSAGONIDAE
Kozur & Mostler, 1981
Genus Sepsagon
Dumitrica, Kozur & Mostler, 1980
Type SPECIES. — Triactoma longispinosum Kozur &
Mostler, 1979.
Sepsagon sp.
(Fig. 3E)
Description
Shell subspherical with rough nodose surface,
with small pores in rectangular pore frames.
Three main spines long, curved, with Y-shaped
cross-section and moderately developed dextral
torsion.
Remarks
Only one specimen was observed.
Genus Pseudostylosphaera
Kozur & Mostler, 1981
Type SPECIES. — Pseudostylosphaera gracilis Kozur &
Mock, 1981.
Pseudostylosphaera (?) sp.
(Fig. 71)
Remarks
This form is characterized by short thin apo¬
physes at the médian parts of the main spines. It
did not represent a typical double layered shell of
Pseudostylosphaera and may belong to another
genus.
Family HexapyiüMELLIDAE
Kozur & Mostler, 1979
Genus Praenanina Kozur, 1994
Type species. — Praenanina veghae Kozur, 1994.
Praenanina veghae Kozur, 1994
(Fig. 2B, C, E)
Praenanina veghae Kozur, 1994 in Kozur àc Mostler,
1994: 247, pl. 2A, fig. 2; pl. 4A, figs 1, 3.
Occurrence. — Middle (?) to upper Carnian of
Hungary, lower Norian of Cyprus.
Family Pentactinocarpidae
Dumitrica, 1978
Genus Pentactinocarpus Dumitrica, 1978
Type species. — Pentactinocarpus fusiformis
Dumitrica, 1978.
GEODIVERSITAS • 1999 • 21 (4)
543
Bragin N. Yu. & Krylov K. A.
Fig. 2. — A-D. Carinaheliosoma carinata Kozur & Mostler; D. detail; B. C, E, Praenanina veghae Kozur; E, detail; F,
Archaeocenosphaera sp.; G, Heliosoma (?) sp.; H, Entactinosphaera (?) sp. 1. Scale bar: A, B, C, F, 100 pm; D. E, 20 pm; G, H,
200 pm.
Pentactinocarpus sp.
aff. P, tetracanthus Dumitrica, 1978
(Fig. 7D)
Remarks
This form ditFers from Pentactimcarpm tetr'acari-
thus (Dumitrica, 1978: 44, pl 2, fig, 1) by larger
and widcr test. It difFers from P. sevaücm (Kozur
& Mosder. 1981: 21, pl. 52, %. 3, pl. 53, figs 2,
5, pl. 55, fig. I) by more delicaie meshwork of
cortical shell with smaller pores in hexagonal to
pentagonal pore frames with small nodes at ver-
tices. P magnus (Kozur & Mostler, 1979: 55,
pl. 10, fig. 1) bas larger pores enclosed in the
variable polygonal pore frames without nodes at
vet tices.
Pentactinocarpus sp.
(Fig. 7E)
Remarks
This form possesses a délicate small test with
544
GEODIVERSITAS • 1999 • 21 (4)
Early Norian Radiolaria from Cyprus
very thin and long apicaK antapical and basal
spines. The position of basal spines is similar to
chose of Pentactinocnrfiis tetracanthus Dumitrica
but specimen from Cyprus differs by small sue
of test and by thin necwork-like meshwork of a
cortical shell.
Superfamily AcTINOMMACEA Haeckel, 1862
Family XlPHüS'l'YLlDAE Haeckel, 1881
Genus Archaeocenosphaera
Pessagno & Yang, 1989
Type SPECIES. — Archaeocenosphaera ruesti Pessagno
& Yang, 1989.
Archaeocenosphaera sp.
(Fig. 2F)
Remarks
This form is similar to Archaeocenosphaera sp. aff
A. laseekensis Pessagno & Yang (Carter 1993: 67,
pl. 1, figs 14, 19, 20). It difters by smaller test
with pores chat are more unitorm in size.
Family ActinommidAE Haeckel, 1862
Genus Carinahelmoma
Kozur & Mostler, 1981
Type SPECIFS. — Carmaheliosoma densiporata Kozur
&Mock, 1981.
Carinaheliosoma carinata
(Kozur Mostler, 1979)
(Fig. 2A, D)
Heliosoma carinata Kozur 6c Mostler, 1979: 52, pl. 9,
fig. 1-3.
Carinaheliosoma carinata (Kozur & Mostler, 1979) -
Lahm 1984: 65, pl. 11, fig. 8.
Occurrence. — Upper Triassic, Carnian to lower
Norian of the European Tethys.
Genus Heliosoma Haeckel, 1882
entend. Kozur &: Mostler, 1979
Type SPECIES. — Heliosoma radians Haeckel, 1887.
Heliosoma (?) riedeli
Kozur 6c Mo.siler, 1981
(Fig. 3B, D)
Heliosoma (?) riedeli Kozur 6i Mostler, 1981: 65,
pl. 1, fig. 4. — Lahm 1984: 63. pl. Il, figs 2, 3.
Occurrence. — Middle Triassic, Ladinian, Upper
Triassic, Carnian (?) to lower Norian of the European
Tethys.
Heliosoma (?) sp.
(Fig. 2G)
Description
Small roughly subspherical to rectangular test
with cen long thin thrce-bladed spines. Cortical
shell with small roughly subcircular pores.
Proximal parts of spines with deep grooves that
becomc narrow at the middle parcs and disappcar
at the distal parcs.
Remarks
This form differs from Heliosoma (?) riedeli
Kozur 6c Mostler by small size of cortical shell
and its roughly spherical to rectangular shape.
Genus Kahlerosphaera
Kozur 6c Mostler, 1979
Type SPECIES. — Kahlerosphaera parvispinosa Kozur &
Mostler, 1979.
Kahlerosphaera aspinosa
Kozur & Mock, 1981
(Fig. 7A)
Kahlerosphaera ? aspinosa Kozur 6c Mock, 1981 in
Kozur 6c Mostler, 198L 36, pl. 47, fig. 3.
Occurrence. — Upper Triassic, lower Norian of the
European Tethys.
Kahlerosphaera norica
Kozur 6c Mock, 1979
(Fig. 6G. H)
Kahlerosphaera norica Kozur 6c Mock, 1981 in Kozur
& Mostler, 1981: 36, pl. 15, fig. 4.
Occurrence. — Upper ’Friassic, Carnian to lower
Norian of the European Tethys.
GÉODIVERSITAS • 1999 • 21 (4)
545
Bragin N. Yu. &C Krylov K. A.
Fig. 3. — A, Entactinosphaera (?) sp. 1 ; B. D. Heliosoma (?) riedeli Kozur & Mostler; C. Entactinosphaera sp. aff. E. simoni Kozur &
Mostler; E. Sepsagon sp.: F. Entactinosphaera (?) sp. 1. Scale bar: A, 50 pm; B-F, 100 pm.
Genus Vinassaspongus
Kozur & Mostler, 1979
Type species. — Vinassaspongus subsphaericus Kozur
& Mostler, 1979.
Vinassaspongus transitus
Kozur & Mock, 1981
(Fig. 6D, F)
Vinassaspongus transitus Kozur & Mock, 1981 in
Kozur & Mostler, 1981: 69, pl. 64, figs 1, 2.
Occurrence. — Upper Triassic, lower Norian of the
European Tethys.
Genus Zhamojdasphaera
Kozur & Mostler, 1979
T\te species. — Zhamojdasphaera latispinosa Kozur
& Mostler, 1979.
546
GEODIVERSITAS • 1999 • 21 (4)
Early Norian Radiolaria from Cyprus
Fig. 4. — A, Capnuchosphaera deweveri Kozur & Mostler; B, Capnuchosphaera sp. cf. C. deweveri Kozur & Mostler; C, Sarla (?)
sp.: D. E, Capnuchosphaera thelvides minor Bragin n. ssp.; E. holotype; F. H. I. Capnuchosphaera sp. et. C. iheloides De Wever; G,
Capnuchosphaera sp. atl. C. carpathica Kozur & Mock. Scale bar: A-C, F-l. 100 pm: D, E, 80 pm.
Zhamojdasphaera proceruspinosa
Lahm, 1984
(Fig. 8E)
Zhamojdasphaera proceruspinosa Lahm, 1984: 75,
pl. 13, fig. 6.
Occurrence. — Upper Triassic, Carnian-lower
Norian of the Tethys.
Family CAPNUCUUSIHtAERIDAE
' De Wever, 1979
Genus Capnuchosphaera De Wever, 1979
Type SPECIES. — Capnuchosphaera triassica De Wever,
1979.
Capnuchosphaera deweveri
Kozur & Mostler, 1979
(Fig. 4A)
GEODIVERSITAS • 1999 • 21 (4)
547
Bragin N. Yu. & Krylov K. A.
Capnuchosphaera tj'iassica var. a De Wever, 1979: 84.
pl. 4, figs 3-5.
Capnuchosphaera dewevert Kozur Ôc Mostlct,1979: 77,
pl. 10, figi 2, 4-8i pl. 12, fig. 1. — De Wever 1982:
152, pl. üp 10, 11; pl. 4. figs l, 2.-Blome 1983:
16, pl. l, figs 3, 8, 9, 16, 18; pl, 11, fîgs 1, 2, 16, —
Lahm 1984: 81, pl. 14, fig. 7. - Yeh 1990: 8. pl. 2,
fig. 5; pl. 10,flg. 8.
Occurrence. — Upper Carnian to lower Norian of
European Tethys and Pacific coastal areas.
Capnuchosphaera sp.
cf. C deweveri Kozur & Mostler, 1979
(Fig. 4B)
aff. Capnuchosphaera deweoeri Kozur & Mostler,
1979; 75, pl. 10. figs 4-7; pi- 12, fig. 1.
Remarks
This form has shorter and thicker tumidaspinae
than C deweveri Kozur & Mostler. The new
taxon cannoc be described because of poor pré¬
servation.
Capnuchosphaera theloides minor
Bragin n. ssp.
(Fig. 4D, E)
Capnuchosphaera theloides yjiï. a De Wever, 1979:
p, 84, pl. 4, fig. U - Nakaseko & Nishimura 1979:
p. 75, pl. 7, fig. 7. - De Wever 1982: 158, pl. 6,
fig. 8.
Capnuchosphaera theloides 1982: pl. 1, fig. 23. -
Yoshida 1986: pl. 12, fig. 4. — Bragin 1991a: p. 77,
pl. 5, figs 14. 15.
Holotype. — Fig. 4E. GIN-4858-42. Cyprus, Agia
Varvara Village, Maraonia Complex, Upper Triassic,
lower Norian.
Etymology.— Minor {Latin)-younger.
Dimensions (based on fivc spccimens). — Diameter
of cortical shell 130-135 pm. total length of spincs
220-260 pm, length of distal rod-likc parts of spines
145-160 pm, maximal width ol spines 80-90 pm.
Occurrence. — Upper Tria.ssic, upper Carnian to
lower Norian of European Tethys, Japan and eastern
Russia.
Descripi'ion
Cortical shell spherical with three tumidaspinae
.situated in rhe same plane. Proximal parts of
tumidaspinae smooth, moderacely ihick, central
parts three-bladed, tetrahedrical, without torsion,
distal parts verj* long and chin wtihoui dcar dif¬
férentiation from central parts. Cortical shell per-
forated by small circular pores in the irregular
rhorny pore frames.
Remarks
The.sc forms differ from Capnuchosphaera the-
laides theloides (De Wever, 1979; 83, pl. 3,
figs 10-13) by the characier of tumidaspinae
with thinner proximal parts and longer distal
parts vhar are not well differenriated from the
central tetrahedrical parts.
Capnuchosphaera sp.
cf. C theloides De Wever, 1979
(Fig. 4F, H, I)
et. Capnuchosphaera theloides De Wever, 1979: 83, 84,
pl. 3, figs 10-13: pl. 4, fig. 1.
Remarks
This form ha.s poorly preserved central and distal
parts of tumidaspinae. Due to this préservation it
is difficult to give a précisé détermination.
Capnuchosphaera sp.
aff. C. carpathica Kozur & Mock, 1981
(Fig. 4G)
aff. Capnuchosphaera carpathica Kozur & Mock,
1981:74, pl. 48, fig. 5.
Occurrence. — Upper Triassic, lower Norian of
Cyprus.
Description
Cortical shell subspherical with three tumida¬
spinae in the sanie plane and thin rod-likc addi-
tional spine petpendicular to the tumidaspinae.
Tumidaspinae with moderately thick proximal
parts, central parts subtetrahedrical, concave,
without torsion, distal parts long and thin.
Cortical shell with small subcircular pores in irre¬
gular pore frames.
548
GEODIVERSITAS • 1999 • 21 (4)
Early Norian Radiolaria from Cyprus
Remarks
This form differs from C carpathica Kozur &
Mock by more concave charactcr of tumidaspi-
nae and by the presence of additional spine.
Genus SarU Pcssagno, 1979
Type species. — Sarla prietoensts Pessagno, 1979.
Sarla (?) sp.
(Fig. 4C)
Description
Cortical shell subspherical, slightly flattened to
subdiscoidal, with thrce spines in the same plane.
Spines thrce-bladcd» without torsion, with slight¬
ly inflated middlc parts. Distal parts of spines
with tetragonal-like structures, poorly preserved.
Pores of shell small, subcircular, encloscd in irre-
gular pore frames.
Remarks
Only one specimen was found. It is similar to
Eptinghim sp. A (De Wever 1982: 277, pl. 35,
figs 3, 4; Grapes et al. 1990, fig. 9h) but pos-
sesses more inflated shell. Due to poor préserva¬
tion, it is difficult to conclude that it is the same
spccies as illustrated by De Wever. The generic
assignment is utider question. The terminations
of spines resemble similar structures of
Kablerosphaera.
Genus Sulovella Kozur àc Mock, 1981
Type species. — Sulovella constricta Kozur & Mock,
1981.
Sulovella constricta
Kozur &: Mock, 1981
(Fig. 5A, B)
Sulovella constricta Kozur & Mock, 1981 in Kozur &
Mostler, 1981: 77, pl. 64, fig. 2.
Capnuchosphaera cf. comtricta - Halamic ôc Gorican
1995;pL 2, fie. H.
? Capntichosphaera crassa Yeh, 1990: 8, pl. 1, figs 8,
11-13, 18. 19. — Halamic Ôr Gorican 1995: pl. 2,
fig. 12.
Occurrence. — Upper Triassic, lower Norian of
Carpachians, Croatia, Philippines (?) and Cyprus.
Genus Icrioma De Wever, 1979
Type species. — Icrioma tetrancistrum De Wever,
1979.
Icrioma tetrancistrum De Wever, 1979
(Fig. 5G)
Icrioma tetrancistrum De Wever, 1979: 86, pl. 4,
figs 13-15; 1982; 262, pl. 22, figs 1-6.
Occurrence. — Upper Triassic, upper Carnian to
lower Norian, European Tethys.
Icrioma sp. aff. L tetrancistrum
De Wever, 1979
(Fig. 51)
Remarks
This form differs from Icrioma tetrancistrum De
Wever by tetrahedrical rather then subspherical
form of shell with arms less well differentiated
from the central part of shell.
Genus Kinyrosphaera Bragin n. gen.
Type species. — Kinyrosphaera trispinosa n. sp.
Sl’ECIKS INCLUDEO. — Kinyrosphaera trispinosa Bragin
n. sp., K. helicata Bragin n. sp.
EtymOLüCV. — Kinyras (Greek), legendary king of
Cyprus, founder of pre-Greek Cypriot dynasty.
Occurrence. — Upper Triassic, lower Norian of
Cyprus.
Description
Capnuchosphaeridae with three spine.s parrly
covered hy porous extensions ol cortical .shell.
Cortical shell spherical or subspherical, with wall
typical for the fâmily. Ceniial parts of .spines
with three large pores, distal parts thin, some-
rimes rod-like.
Remarks
Kmyrosphaera Bragin n. gen. differs from Icrioma
De Wever by présence of three spines, from
Capnuchosphaera De Wever by porous extensions
of cortical shell to the proximal parts of spines.
GEOOIVERSITAS • 1999 * 21 (4)
549
Bragin N. Yu. & Krylov K. A.
Fig. 5. — A. B. Sulovella constricta Kozur & Mock; C-E, Kinyrosphaera trispinosa Bragin n. gen., n. sp.; C, holotype; D, detail of
spine; F, H. Kinyrosphaera helicata Bragin n. gen., n. sp., F. holotype; G, Ichoma tetrancistrum De Wever; I, /chôma sp. aff. I. tetran-
cistrum De Wever. Scale bar: A-C, G. I. 100 pm; D, F, H, 80 pm; E, 35 pm.
Kinyrosphaera trispinosa Bragin n. sp.
(Fig. 5C-E)
HolotyI’E. — Fig. 5C, GIN-4858-49, Cyprus, Agia
Varvara Village, Mamonia Complex, Upper Triassic,
lower Norian.
Ettmolocîy. — Trispinosa (Latin), wirh thrcc spincs.
Occurrence. — Upper 'Lriassic, lower Norian of
Cyprus.
Dimensions (based on cight spedmens). — Diameter
of cortical shell 155-180 pm, length of spines without
terminal parts 140-155 pm.
DESCRIPI'ION
Cortical shcll spherical with nodose surface, with
small subcircular to subrectangular porcs in
weakly devcloped rectangular pore franies. Spines
xnoderacely long, lie in rhe same plane. Proximal
parts of spines short, cylindrical, with small sub-
550
GEODIVERSITAS • 1999 • 21 (4)
Early Norian Radiolaria from Cyprus
circular pores arranged in longitudinal rows
somerimes displaying small dexrral twisting.
Central parts of spines Y^shaped in cross-section,
with threc large pores. Distal parts of spines are
dividcd into three rod-likc terminations slightly
curved distally with small smooth node at their
joints.
Rf.marks
Kinyrosphaera trispinosa Bragin n. gen., n. sp. dif-
fers from K. helicata Bragin n. gen., n. sp. by
non-twistcd central parts of spines and by trifur¬
cation of distal parts of spines.
Kinyrosphaera helicata Bragin n. sp.
(Figs 5F, H. 6A)
? Capnuchosphaera (?) sp. — Halamic & Gorican 1995:
pl. 2, fig, 10.
HolüTYPE. — Fig. 5F, GlN-4858-51> Cyprus, Agia
Varvara Village, Mamonia Complex, Upper Triassic,
lower Norian.
EtymologY. — Hélix (Greek), spiral shell.
OcCURRENCn. — Upper Triassic, lower Norian of
Cyprus, upper Carnian of Croatia.
Dimensions. — Diamcter of cortical shell 160-
200 um, total length of spines 220-270 pm, maximal
widrn of spines 60-80 fim,
Descri P rioN
Cortical shell spherical with nodo.se surface, with
small subcircular to subrectangular pores in
weakiy developed rectangular porc framcs. Spines
long, lie in the same plane. Proximal parts of
spines cylindrica), with small subcircular pores
arranged in longitudinal rows and with longitu¬
dinal ridges berween rows of pores. Central pans
of spines srrongly twisted sinisirally, Y-shapcd in
cross-section, with three large porcs. Distal pans
of spines long, thin, rod-like.
Remarks
Kinyrosphaera helicata Bragin n. gen., n. sp. dif-
fers from K. trispinosa Bragin n. gen., n. sp. by
the twisting of central parts of spines and by the
long rod-like distal parts of spines.
Kinyrosphaera (?) sp.
(Fig. 6B)
Remarks
This form bas three porous extensions of the cor¬
tical shell at three main spines, but does not dis¬
play typical Y-shaped in cross-section médian
parts of spines. Only one spécimen was observed.
Capnuchosphaeridae gen. et sp. indet.
(Fig. 6E)
Remarks
This form bas four tetrahedrically arranged solid
twisted spines. It differs from the représentatives
of gen us Sarla Pessagno by the number of spines.
Family Pantanelliidae Pessagno, 1977
Subfamily CapnodüCINAE Pessagno, 1979
Genus Capnodoce De Wever, 1979
Tyi*E SPECIES. — Capnodoce anapeies De Wever, 1979.
Capnodoce ruesti Ko/ur & Mock, 1981
(Fig. 7B, C)
Capnodoce mesti Kozur & Mock, 1981, in Kozur &
Mosder, 1981: 74, fig. 65, fig. 2.
Occurrence. — Upper Triassic, lower Norian of
Carpathians and Cyprus.
Genus Pessagno, 1979
Tyve SPECIES. — Loffa mulleri Pessagno, 1979.
Loffa (?) sp.
(Fig. 60
Description
Shell subtctrahedrical, spongy» with four tubular
.spines (typical for Subfamily Capnodocinae).
Spines tetrahedrically placed, smooth, cach with
three internai channels which end by threc pores
at terminarions.
Remarks
This form belongs to genus Loffa Pessagno due
to che presence of four smooth tubular spines
GEODIVERSITAS • 1999 • 21 (4)
551
Bragin N. Yu. & Krylov K. A.
Fig. 6. — A. Kinyrosphaera helicata Bragin n. gen., n. sp.; B, Kinyrosphaera (?) sp.; C, Loffa (?) sp.; D, F, Vinassaspongus transitus
Kozur & Mock; E. Capnuchosphaeridae gen. ef sp. indet.; G, H, Kahlerosphaera norica Kozur & Mock. Scale bar: B. C, F, H,
100 pm; A, D. G. 80 pm. E. 50 pm.
without pomus cxteasions of a cortical shell. It is
characterizcd hy irregularly spongy meshwork of
shcll and by ihickcr spincs than other représenta¬
tives of gen us Loffii.
Superfamily Spongodiscacea
H aeckel, 1862
Family SPONGURlDAt: Haeckel, 1862
Genus Spongostylus Vizeckei, 1882
Type species. — Spongostylus hastatus Haeckel, 1882.
Spongostyhis camicm
Kozur & Mostlcr, 1979
(Fig. 7F)
Spongostyius carnicus Kozur & Mostlcr. 1979; S8,
pl. 9, figs 5, 6, 8. 9; 1981, pl. 38, fie. 3. - I.alim
1984: 69) pl. 12. fig. 4. — Carter et al, 1989: pl. 1,
fig. 5. - Ych 1989: 67) pl- 13, fig. 8. - Grapes et al.
1990: fig. 80. — Halamic & Gorican 1995: pl. 2,
figs 18, 19. — Knipper ^i/. 1997: pl. 2, fig. 1.
552
GEODIVERSITAS • 1999 • 21 (4)
Early Norian Radiolaria from Cyprus
Fig. 7. — A, Kahlerosphaera pan/ispinosa Kozur & Mostler; B. C. Capnodoce ruesti Kozur & Mock; D. Pentactinocarpus sp. aff.
P. tetracanthus Dumitrica; E, Pentactinocarpus sp., F, Spongostylus camicus Kozur & Mostler; G, Kamospongella bispinosa Kozur &
Mostler; H. Pentaspongodiscussp. 1; I. Pseudostylosphaera sp. Scale bar: A-C. E, G-1,100 pm; D, F, 50 pm.
Occurrence. — Uppcr Triassic, Curnian to lower
Norian, worlclwiclt? in thc low paleolaritudcs.
Spongostybis tortilis
Ko/ur & Mostler, 1979
(Fig. 8A)
Spongostylus tortilis Kozur & Mosrlcr, 1979: 58, pi. 4,
fig. 2; pl. 11. fig. 6; pl. 18, fig. 2; 1981: pl. 40, fig. 2;
pi. 56, fig. 3. — Lahm 1984: 68, pl. 12, fig. 3.
Spongostylus — Knipper et al. 1997: pl. 1, figs 5, 6.
Occurrence. — Upper Triassic, Carnian to lower
Norian, worldwide in thc low palcolatirudes.
Genus Kamospongella
Kozur & Mostler, 1981
Type SPECIES. — Kamospongella bispinosa Kozur &
Mostler, 1981.
GEODIVERStTAS • 1999 * 21 (4)
553
Bragin N. Yu. & Krylov K. A.
KamospongelLi bispinosa
Kozur & Mostlcr, 1981
(Fig. 7G)
Spumellaria gcn. et sp. indet. - Kozur & Mostler
1979: pLil.fig. 2.
Kamoipüngeiiû bhpinosa Kozur & Mostler, 1981: 42,
pl. 50, fies 1,2.
Gombemlus bhpinosus (Kozur ôc Mostler) - Gorican
et Baser 1990. 146, pl. 1, Pig. 10. - Halamic et
Gorican 1995.' pl. 1. fig- 6.
Kamospongellii B-Yeh 1989: pl. 14, rig. 16.
Bemoullîtis (?) capricorrms — Bragin 1991b: 83, pl. 1,
figs 1-5.
OCCURRP.NCE. — Middle to Upper Triassic, Ladinian
to lower Norian, Tethys.
Remarks
This finding represents rhe highest present-day
known occurrence of Karnospongella bispinosa
Kozur & Mostler.
Family Ferresiidae Carter, 1993
Cçnua Ferrestum Blome, 1984
Type SPECIES. — Ferresium laseekense Blome, 1984.
Ferresium sp. aff. F. conclusum
Carter, 1993
(Fig. 8B)
aff. Ferresmm conclusum Carter, 1993: 68, pl. 9,
figs 1-5.
RE MARKS
This form differs from F conclusum Carter by
more strong torsion of main spines.
Family Patulibracchiidae
Pessagno, 1971
Genus Paronaella Pessagno, 1971
Type SPF.CIES. — Paronaella solanoensis Pessagno,
1971a.
Paronaella norica Kozur & Mock, 1981
(Fig. 8G, H)
Paronaella norica Kozur & Mock, 1981 in Kozur &
Mostler, 1981: 63, pl. 46, fig. 2.
Occurrence. — Upper Triassic, Norian, worldwide
in low paleolatitudcs.
Paronaella sp.
(Fig 81)
Description
Thrce-rayed spongy shell with short rays that
have bulboLis distal parts.
Remarks
Due to poor préservation this form is difFicult to
compare with other représentatives of genus
Paronaella.
Genus TriassocrucellaYsmxx, 1984
Type SPECIES. — Hagiastrum triassicum Kozur &
Mostler, 1978.
TriassocrucelUi triassica
(Kozur Mostler, 1978)
(Fig 8J)
Hagiastrum triassiam Kozur & Mostler, 1978: 144,
pl. 1, f'g- 4; pl. 2, fig. I I.
Crucella ninsstca (Kozur & Mostler) - l^hm 1984:
91, pl. 16. fig. 9.
Truissocrutrlla triassicum (Kozur & Mostler) - Kozur
1984: D.
Oc:cURRENCE. —Upper Trias.sic, Carnian to Norian,
European Tethys.
Superfamily Pyloniacka Haeckel, 1881
Family Orbiculiformioae Pessagno, 1973
Genus I^aeorbiculiformella
Kozur & Mostler, 1978
T\TE SPECIES. — Praeorbiculijhrmella plana Kozur &
Mostler, 1978,
Praeorbiculiformella goestlingetuis
Kozur & Mostler, 1978
(Fig. 8D)
Praeorbiculiformella goestlingensis Kozur &: Mostler,
1978: 164, pl. 1, figs 10, 13; pl. 4, fig. 3. - Lahm
1984: 93, pl. 17, fig. 2.
554
GEODIVERSITAS • 1999 • 21 (4)
Early Norian Radiolaria from Cyprus
Fig. 8. — A. Spongostylus tortilis Kozur & Mostler; B. Ferresium sp. aff. F. conclusum Carter; C, Pentaspongodiscus sp. 2;
D, Praeorbiculiformella goestUngensis Kozur & Mostler; E. Zhamojdasphaera proceruspinosa Lahn; F, Veghicyclia sp. cf. V. robusta
Kozur & Mostler; G, H. Paronaella norica Kozur & Mock; I, Paronaella sp.; J, Triassocrucella triassica (Kozur & Mostler). Scale bar:
A-H, J, 100 pm; I. 80 pm.
Occurrence. — Uppcr Triassic, Camian to lowcr
Norian, Europcan Teihys.
Supcrfamily Saturnalucea
D etlandre, 1953
Family SArURNAl lDAF Deflandre, 1953
Subfamüy Far.\SATURNAUNA£
Kozur &c Mosder, 1972
Genus Palaeosaturnalis Donofrio & Mosder, 1978
Type SPECIES. — Spongosaturnalis triassicus Kozur &
Mostler, 1972.
Palaeosaturnalis triassicus
(Kozur & Mostler, 1972)
(Fig. 9A, B, E)
Spongosaturnalis triassicus Kozur & Mostler, 1972: 40,
pl. 1, fig. 10; pl. 4, figs 1, 2. - De Wever et al. 1979:
81, pl. 2, fig. 2.
GEODIVERSITAS • 1999 • 21 (4)
555
Bragin N. Yu. & Krylov K. A.
Acanthocircus friassicus (Kozur & Mostler) - De
Wever 1982: 207, pL 13, fig. 10.
Palaeosatiirmlis triassicm (Kozur & Mostler) - Lahm
1984: 97, pl. 17,%. II.
Occurrence. — Upper Triassic, Carnian to lower
Norian, Tethys.
Palaeosaturnalis mocki
Kozur & Mostler, 1983
(Fig. 9G, H)
Palaeosaturnalis mocki Kozur & Mostler, 1983: 21,
pl. 5, %. 2.
Occurrence. — Upper Triassic, lower Norian,
Carpathians, Cyprus.
Palaeosaturnalis latiannulatus
Kozur & Mostler, 1983
(Fig. 9D)
Palaeosaturnalis latiannulatus Kozur & Mostler, 1983:
20, pl. 5, %. 1.
Occurrence. — Upper Triassic, lower Norian,
Carpathians, Cyprus.
Genus Liassosaturnalis
Kozur & Mostler, 1990
Type SPECIES. — Liassosaturnalis parvus Kozur &
Mostler, 1990.
Liassosaturnalis parvtis
Kozur & Mostler, 1990
(Fig. 9C)
Liassosaturnalis parvus Kozur & Mostler, 1990: 203,
pl. 4, figs 3,7, 12, pl. 6, fig. 6.
Occurrence. — Upper 3'rias.sic (Norian) to Lower
Jurassic (Hettangian) of the European l'ethys.
Genus Praemesosaturnalis
Kozur & Mostler, 1981
Type SPECIES. — Spongosaturnalis bifidus Kozur &
Mostler, 1972.
Praemesosaturnalis sp.
cf. P, multidentatus
(Kozur 6c Mostler, 1972)
(Fig. 9F)
cl. Spongosaturnalis multidentatus Kozur & Mostler,
1972:38. pl. 1. fig. 20.
Description
Ring with two pcripolar short main spines, with
numerous vcry small auxiliary spines, and with
eleven short outer rays. Main spines asynimetri-
cally arrangcd.
Re\urks
This form difFers from rypical P. multidentatus
(Kozur & Mostler) by the asymmetrical arrange¬
ment of main spines and by .shorrer outer rays.
Genus Veghuydia
Kozur & Mostler, 1972
Type SPECIES. — Veghicyclia pulchra Kozur &
Mostler, 1972.
Veghicyclia sp. cf. V, robusta
Kozur & Mostler, 1972
(Fig. 8F)
cf. Veghicyclia robusta Kozur & Mostler, 1972: 15,
pl. 3, %s I, 4, 7.
Rhmarks
This form has poorly preserved central part. It
possesses longer and thinner rays than typical
V. robusta.
SpumellARIINA incertae famÜiae
Genus Pentaspongodiscus
Kozur & Mostler, 1979
Type SPECIES. — Pentaspongodiscus tortilis Kozur &
Mostler, 1979.
Pentaspongodiscus sïi. 1
(Fig. 7H)
556
GEODIVERSITAS • 1999 • 21 (4)
Early Norian Radiolaria from Cyprus
Fig. 9. — A, B. E. Palaeosatumalis triassicus (Kozur & Mostler); C, Liassosaturnalis parvus Kozur & Mostler; D. Palaeosaturnalis
latiannulatus Kozur & Mostler; F. Praemesosaturnalis sp. cf. P. multidentatus (Kozur & Mostler); G, H, Palaeosatumalis mocki Kozur
& Mostler. Scale bar: 100 pm.
DeSCRIP'I'ION
Shell small, flartened, discoidal, with five main
spines. Spines short, thick, spindle-shaped, with
Y-shaped cross-section and strong dextral tor¬
sion.
Reniarks
This form differs from other représentatives of
genus Pentaspongodiscus Kozur & Mostler by the
spindle-shaped thick spines with strong torsion.
Pentaspongodiscîis sp. 2
(Fig. 8C)
Remarks
The illustrated specimen is uncomplete. It has
probably six very thin spines.
GEODIVERSITAS • 1999 • 21 (4)
557
Bragin N. Yu. &: Krylov K. A.
Order NASSELLARJA Ehrenberg, 1875
Family PoULPIDAE De Wever, 1981
Genus Potdpus De Wever, 1979
Type SPECIES. — Potdpuspiahyx De Wever, 1979.
Poulpus piabyx De Wever, 1979
(Fig. lOA-C)
Poulpus piabyx Wever, 1979: 98. pl. 7, figs 12, 13.
- Kozur & Mostler 1979; 89, pl. 4, fig. 3. - De
Wever 1982: 328, pl. 48, Ftg.s. 5, 6. — Yeh 1990: pl. 8,
figs 3, 7> 9. - Sugb'ama 1997: fig. 49 (15).
OcCURKfNCF.. — Triassic, upper Carnian to
lower Norian, worldwide H\ the |ow-paîçolaritudes.
Genus Neopylentonema Kozur, 1984
Type SPECIES. —• Neopylentonema mesotriassica Kozur,
1984.
Neopylentonema sp.
aff. N procera Sugiyama, 1997
(Fig. lOE)
? Poulpus (?) sp. C—Yeh 1989; 74, pl. 6, figs 5, 10.
aff. Neopylentonema procera Sugiyama, 1997: 161,
figs 46-3a, b.
Rkmarks
This forni has longer and thinner apical spine
and three feet chan typical N. procera. Il is more
similar ro Poulpus sp. C (Yeh 1989). Only a few
specimens were obtained, mosdy poorly preser-
ved.
Family ForemanELUDAE Dumitrica, 1982
Genus Foremanellina Dumitrica, 1982
Type species. — Foremanellina helenae Dumitrica,
1982.
Foremanellina (?) sp.
(Fig. lOJ)
Description
Small form with three-bladed apical horn and
three latéral horns, slightiy inclined downwards.
Remarks
This form has poor préservation and cannot be
determined on the species level.
Family PSEUOOSATURNIFORMIDAE
Kozur ôz Mosilcr, 1979
Genus l^seudosaturniforma
Kozur ÔZ Mostler, 1979
Type species. — Pseudosaiurniforma latimarginata
Kozur & Mostler, 1979.
Psetidosnturnifonna camica
Kozur & Mostler, 1979
(Fig. 101, K, L)
Pseudosaturniforma carnicu Kozur Mostler, 1979:
94, pl. 17, fig. 3; 1981: pl. 22, fig. 3.
Occurrence. — Upper Triassic, Carnian to lower
Norian of European l'ethys.
Family Ultranaporidae Pessagno, 1977
Genus TrialatusYA^ 1990
Type species. — TrialalusnwgacomutusYeh, 1990.
Trialatus robnstus
(Nakaseko & Nishimura, 1979)
(Fig. HA, B)
Napora robuita Nakaseko Nishimura, 1979: 78,
pl. 8, figs 4-6. - Yoshida 1986: pl. 7, figs 1, 6, 8. -
Bragin 1991a: 97, pl. 6, figs 2, 3.
Trialatus robtatus (Nakaseko & Nishimura) -
Sugiyama 1997': fig. 27 (16).
Occurrence. — Upper Triassic, upper Carnian to
lowxr Norian, Japan, eastern Russia and Cyprus.
Remarks
Specimens obraincd from Cyprus differ from
rypical by the présence of an addiüonal posrrho-
racic segment. This segment (abdomen?) has
sLibtrapezoidal outlinc and very thin laiiiced
Wall. Commun .specimens from Japan and cast-
ern Russia were obtained from cberts and did
not represent this element, probably due to the
préservation.
558
GEODIVERSITAS • 1999 • 21 (4)
Early Norian Radiolaria from Cyprus
Fig. 10. — A-C, Pouipus piabyx De Wever; D, H. Triassobipedis (?) sp.; E. Neopylentonema sp. aff. N. procera Sugiyama;
F. Napora (?) sp. 1; G. Napora (?) sp. 2; I, K. L. Pseudosaturniforma carnica Kozur & Mostler; J, Foremanellina (?) sp. Scale bar:
A. D-H, J, K, 100 pm: B, 35 pm: C, 80 pm; I. 50 pm; L, 20 pm.
Gémis Napora Pessâgno, 1977
Type SPECIES. — Napora bukryi Pessagno, 1977.
Napora (?) sp. 1
(Fig. 10F)
Description
Small subconical test with short thin three-bla-
ded apical horn and three long, straight three-
bladed feet. Very short and thin inclined vertical
horn can be seen at apical part.
Remarks
Only one specimen was obtained and illustrated.
Napora (?) sp. 2
(Fig. lOG)
Description
Small test with apical horn and three feet.
GEODIVERSITAS • 1999 • 21 (4)
559
Bragin N. Yu. & Krylov K. A.
Cephalis dome-shaped witli moderately long
slighdy inclined apical horn and small inclined
vertical horn. Thorax hcmisphericaU inflated,
with numerous small pores. Feet moderately
long, strongly flattened.
Remarks
Only one specimen of imperfect préservation
was found.
Family BueBOCVUI IDAK
Kozur &. Mostler, 1981
Genus Bulhocyrtium Kozur & Mostler, 1981
Type SPECIES. — Bulhocyrtium reticulatum Kozur &
Mostler, 1981.
Bulhocyrtium latum Braein n. sp.
(Fig. 111, J)
Bulhocyrtium alF reticulatum Kozur & Mostler -
Carter 1989: pl. 1, fig. 1.
Holotyph. — Fig. IIJ, GlN-4S58-23^ Cyprus, Agia
Varvara Village, Mamouia Complex, Upper Triassic,
lower Norian.
Etyiviology. — Latus (Latin), broad.
Occurrence. — Upper Triassic, lower Norian,
Cyprus.
Dimensions (based on tbree specimens). — Length
of test wiihout apical horn 260-320 pm, width of
cephali.s 165-175 pm, nuiximal width of test 280-
340 pm, length of apical horn 80 pm.
Description
Test with four chambers- Cephalis large, spheri-
cal with thin rhree-bladed apical horn. Cephalis
surface with network*like System of small nodes
connected by thm ridgcs ihat form polygonal
framework. Tores of cephalis small. subcircular,
irregularly arranged. ITorax subc^’lindrical, more
than twice shorter than cephalis. Abdomen sub-
cylindrical to subtxapezoidal. Tostabdominal seg¬
ment with expanded termination and wide open
aperture. 1 leight of ail postcephalic segments Icss
than of cephalis. Small strictures are developed
between cephalis, thorax and abdomen. Pores of
postcephalic segments small, subcircular, irregu-
larly arranged.
Remarks
Bulhocyrtium latum Bragin n. sp., differs from
B. reticulatum (Kozur & Mostler 1981: 106,
pl, 11, fig. 1) by larger cephalis with fincr net-
work-like surface and by wider last segment.
Family DEFI^ANDRECYKI IIDAE
Kozur Mostler, 1979
Genus Caphtorocyrtium Bragin n. gen.
Type SPECIES. — Caphtorocyrtium tenemm n. sp.
SpECIES INCEUDED. — Caphtorocyrtium tenerurn
Bragin n. sp.
HtymüLOGY. — Caphtorim-Biblic name; ancestor of
Cypriots.
Occurrence. — Upper Triassic, lower Norian,
Cyprus.
Description
Dicyrtid (or tricyrtid) form with small cephalis,
large, conical postcephalic part, with an apical
horn and three latéral horns.
RFJvURKS
Caphtoroiyrtiuvj n. gen. differs from Deflandrc'
cyrtium (Kozur &: Mostler, 1979: 98) by the pré¬
sence ül latéral horns. Genus Plauhpinoryrtis
(Kozur & Mostler, 1981: lll) has muhicyrtoid
test. Il is very diffieuh ro conclude how many
segments chls genus has (rwo or three). Due to
replacement by pyrite, rhe inner siructurc of api¬
cal part cannot be observed. Nevertheless, coni-
cai distal part of test has open aperture and
represents one segment (thorax or abdomen).
Caphtorocyrtium tenet'um Bragin n. sp.
(Fig. 1 IC'H)
lloLOlYPE. — Fig. IIP, CIN-4858-71, Chorus, Agia
Varvara Village. Manionia Complex, Upper Triassic,
lower Norian.
Etymology. — Tener (Latin), tender.
560
GEODIVERSITAS • 1999 • 21 (4)
Early Norian Radiolaria from Cyprus
Fig. 11. — A. B, Trialatus robustus (Nakaseko & Nishimura): C-H, Caphtorocyrtium tenerum Bragin n. gen.. n. sp.; F, holotype; I, J,
Bulbocyrtium latum Bragin n. sp.: J, holotype; K, Sethocapsa (?) sp. Scale bar: A, D-H, J, 100 pm; B. I, 80 pm; C, K, 35 pm.
Occurrence. — Upper Triassic, lower Norian,
Cyprus.
Dimensions (bascd on eleven specimens). — Length
of test including apical horn 290-335 pm» maximal
width of test 233-290 pm.
Description
Dicyrtid or tricyrtid form. Cephalis small, pore-
less, conical with long thin rod-like apical horn
and threc latcral horn.s a.s prolongations of D and
L (?). Latéral horns thin» Jong, rod-like, slightly
inclined distally. Postcephalic parc large, conical
to concavc-conical with 5-6 transversal rows of
subcircular to subrectangular pores, variable In
size. Widih ol postcephalic part rapîdly increa-
sing distally, aperture wide, open.
GËODIVERSITAS • 1999 • 21 (4)
561
Bragin N. Yu. & Krylov K. A.
Family NEOSCIADIOCAPSIDAE
Pessagno, 1969
Genus Haeckelicyrtium
Kozur & Mostler, 1979
Type SPECIES. — Haeckelicyrtium ausîriacum Kozur &
Mostler, 1979.
Remarks
Following Sugiy'3ma (1997) the tsvp-chambered
hat-like Triassk na^sellarians, which belong to
neither Deflandreiytttum Kozur ôz Mostler» 1979
nor Dreyericyrtium Kozur dc Mostler» 1979 and
bave no basal feet, are assigned to genus
Haeckelicyrtium Kozur & Mostler.
Haeckelicyrtium cartera^ Bragin n. sp.
‘(Fig. 12A-C, £. F)
Holotype. — Fig. 12A, GIN-4858-79, Cyprus, Agia
Varvara Village. Mairionia Complex, Upper Triassic,
lower Norian.
EtymOLüGY. — New species is named after Dr.
Elisabeth Carter in honour of her contributions to
Mesozoic Radiolaria.
Occurrence. — Upper Triassic, lower Norian,
Cyprus.
Dimensions (based on seven specimens). — Length
of test without apkai horn 190-235 pm, maximal
length of apical horn 400 pm (Fig. 12E), maximal
wicith of test 265-490 pm.
Description
Cephalis Mnall subconical with long thin rod-like
apical horn. Thorax large with hemispherical
inflated proximal part and with strongly expanded
distal part with a broad thoracic skiri. Ccphali.s
and thorax singlc-laycrcd with circular pores enlar-
ging distally and arranged into hexagonal (rarae-
work. Pores of thoracic sldrc large, subspherical.
Vélum not devcloped, aperture large, open.
Remarks
Haeckelicyrtium carterae Bragin n. sp. differs
from H. îeren Sugiyama, 1997 by inflated proxi¬
mal part of thorax, well-developed stricture bet-
ween thorax and thoracic skirt and by very long
and thin apical horn.
Genus Nabolella Petrushevskaya, 1981
Type species. — SquinaboUlla bngispinosa Kozur &
Mostler, 1979.
Re.marks
According to the original définition (Petru-
shevskaya 1981: 76) only rwo-chambered hat-
like forms with basal feet are assigned to this
genus.
Nabolella trispinosa Bragin n. sp.
(Fig. 12D, G-I)
Holoitpe. — Fig. 12G, H, GIN-4858-82, Cyprus,
Agia Varvara Village, Mamonia Complex, Upper
Triassic, lower Norian.
EIYMOLOGY. — By the presence of three basal feet.
Occurrence. — Upper Triassic, lower Norian,
Cyprus.
Dimensions (based on three specimens). — Length
of test without apical horn and basal feet 180-
200 pm, maximal width of test 290-300 pm, length
ol apical horn 100 pm.
DESC’RJPTION
Cephalis dome-like with long thin rod-like
slightly inclined apical horn and small indistinct
pores. Distinctive stricture i.s developed berween
cephalis and thorax. Thorax hat-like with infla¬
ted proximal part and wide skJrt-like distal part.
Wall of thorax .single, lauiced with subcircular
pores increasing distally. Médian part of thorax
with deep stricture. Three long rod-like spines
begin from cephalis and are partly incorporared
into thoracic wall. Their distal parts forra three
basal feet. Spines can be supposed as prolonga¬
tions of D and L. Vélum not developed.
Remarks
This species differs from Nabolella longispinosa
(Kozur Mostler, 1979) having only three basal
feet.
562
GEODIVERSITAS • 1999 • 21 (4)
Early Norian Radiolaria from Cyprus
Fig. 12. — A'C, E. F. Haeckelicyrtium carterae Bragin n. sp.: A, holotype; D, G-l, Nabotella trispinosa Bragin n. sp.; G, H, holotype.
Scale bar: 100 pm.
Family Syringocapsidae Foreman» 1973
Genus Syrmgocapsa Ncviani, 1900
Type SPECIHS. — Theosyringiurn rohusturn Vinassa,
1901.
Syringocapsa batodes De Wever, 1979
(Fig. 13L, M)
Syringocapsa hatodes De Wever, 1979: 91, pl. 6,
figs 10, 12. — Nakaseko &c Nishimura 1979: 81, pl, 8,
figs 9, 10. - De Wever 1982: 292, pl. 4l, figs 13, 14;
pl.42, fig. 0.
Syringocapsa ci', batodes De Wever — Yoshida 1986:
pl. 6, fig. 9, 10.
? unnamcd Podobursa-Yi^ic nassellarian - Pessagno et
ai 1979: pl. 4. fig.7-
OccUKRfiNCE. — Upper Triassic, uppcr Carnian to
lower Norian, worldwide in rhe low-palaeolatitude
régions.
GEODIVERSITAS • 1&99 • 21 (4)
563
Bragin N. Yu. & Krylov K. A.
Fig. 13. — A-C, I, Xiphotheca rugosa Bragin; D, Xiphoiheca sp.; E, G. Xiphotheca longa Kozur & Mock; F. Nassellaria gen. et sp.
indet.; H. Xiphotheca (?) sp.; J. K. Xiphotheca (?) spinellifera Bragin n. sp.; J. holotype; L. M, Syringocapsa batodes De Wever.
Scale bar; A, B, D-M, 100 pm; C, 35 pm.
Syringocapsa sp.
(Fig. 141)
Description
Test smalK with subconical apical part, subsphe-
rical, inflated rniddlc parc and distal part rhar
tends to bc tubular (incomplecely preservcd).
Apical part poreless, wiih tiny, vcry short apical
horn. Middle pan with numerous circular pores
in rectangular porc frames with sharp nodes at
vertices, with occasional short spines.
Remarks
This form cannot be compared or described as
new taxon due to uncomplete préservation.
Family PSEUDODICTYOMITRIDAE
Pessagno, 1977b
Genus Whalenella Kozur, 1984
Type SPECIES. — Dictyomitra arrecta Hinde, 1908.
564
GEODIVERSITAS • 1999 • 21 (4)
Early Norian Radiolaria from Cyprus
Fig. 14. — A, B, Whalenella robusta Bragin n. sp.; A, holotype; C, Annulotriassocampe sp. cf. A. sulovensis (Kozur & Mock);
D, Multimonilis pulcher'Yeh; E, G, Triassocampidae gen. et sp. indet.; F, J, Laxtorum (?) sp.; H, Whalenella sp. aff. W- perfecta
Blome; I, Syringocapsa sp. Scale bar: A-C, H-J, 35 pm; D-G, 100 pm.
Wljalenella sp.
aff. W. perfecta (Blome, 1984)
(Fig. 14H)
aff. Corum pefectum Blome, 1984: pl. 13, Figs 2, 7,
16; pl. 17, hg. 11.
Remarks
This form cliflFers from Whalenella perfecta (Blome)
by larger number of chambers (twelve vs seven).
Other external morphological features are very
similar. There arc discontinuous costae and single
row of small pores ar each postabdominal chamber.
Whalenella robusta Bragin n. sp.
(Fig. 14A, B)
Holotype. — Fig. 14A, GIN*4858'12, Cyprus, Agia
Varvara Village, Mamonia Complex, Upper Triassic,
lower Norian.
GEODIVERSITAS • 1999 • 21 (4)
565
Bragin N. Yu. & Krylov K. A.
EtymOLOGY. — RobustUvS (Latin), strong, stout.
Occurrence. — Uppcr Triassic, lower Norian,
Cyprus.
Dimensions (based on five specimens). — Length of
test 180-205 pm, maximal widrh of test 85-90 pm.
Description
Test multicyrtoid with 8-9 chambers. Cephalis
poreless, dome-shaped, without apical horn.
Thorax subrrapczoidal, smooth. Abdomen and
postabdominal chambers with we|l-developed
smooth discontinuons costae. Chambers of the
middle part of the test hâve 16-18 costae (8-
9 visible). Each chamber has single row of large,
deep, circulât to slighily elliptical pores. Height
of chambers incrcases very slowly. Width of
chambers increases to the fourth postabdomina)
chamber, rhen becomes constant or slighrly
decreasing.
Remarks
This species differs trom Whalenella speciosa
(Blome, 1984) by less inflated, smooth costae
that did not merge at final chambers, and by lar-
ger pores.
Genus MullimonilisYch. 1989
Type species. — Midtimonilispulcher Yoh, 1989.
Multimonilispulcher Ych, 1989
(Fig. 14D)
MultimonilispukherYçh.., 1989; 72, pi. 9, figs 9, 19.
Occurrence. — Uppet Triassic, upper Carnian-
lower to middle Norian of Oregon and Cyprus.
Family TriaSSOCAMPIDAE
Kozur & Mostler, 1981
Gcmxs Annulotriassocampe Kozur, 1994
Type species. — Annulotriassocampe baldii Kozur,
1994.
Annulotriassocampe sp.
cf. A. sulovensis (Kozur & Mock, 1981)
(Fig. 14C)
cf. Triassocampe sulovensis Kozur & Mock, in Kozur
& Mostler, 1981: 99, pl. 13, fig. 3. - Yeh 1989; 76,
pl. 2, fig. 13.
ReMAKK-S
Only a few poorly preserved specimens were
found.
Triassocampidae gen. ersp. indet.
(Fig. 14E, G)
Description
Test multicyrtoid, small. Cephalis dome-shaped,
with indistinct pores, with thîn apical horn. Test
has 5-6 segments, rhe lasc ones with transversal
rows of srnall pores. A fiai, leaf-like extension
begins from the proximal part of the apical horn
and surrounds test as widc ellipsoidal ring. Two
sides of ring form an angle (120°).
Remarks
Only a few imperfect specimens were found.
Family Sethocapsidae Haeckel, 1881
Genus Sethocapsa Hacckcl, 1881
Type species. — Sethocapsa cometa (Pantanelli, 1885).
Sethocapsa (?) sp.
(Fig. 11 K)
Descri RnoN
Test small. Cephali.s poreles.s, dome-shaped, tho¬
rax subtrapczoidal with few pores between seve-
ral longitudinal smooth ridges. Postabdominal
part of test inflated with spongy wall and five to
six (?) short basal feet. Aperture indistinct, might
be closed.
Rkmarks
This species is ver)’^ rare in studied material.
Nassellaria incertae familiae
Gtmxs Xiphotheca DcSf/cYtu 1979
Type species. — Xiphotheca karpenissionensis De
Wever, 1979.
566
GEODIVERSITAS • 1999 • 21 (4)
Early Norian Radiolaria from Cyprus
Xiphotheca rugosa Bragin, 1991
(Fig. 13A-C, I)
Xiphotheca rugosa Bragin, 1991a: 107, pl. 5. fig. 11,
13.
Occurrence. — Upper Triassic, upper Carnian to
iower Norian of eastern Russia and Cyprus.
Xiphotheca longa Kozur & Mock, 1981
(Fig. 13E, G)
Xiphotheca longa Kozur & Mock, in Kozur & Mostler,
1981: 113, pl.41,fig. 2.
Occurrence. — Upper Triassic, Iower Norian of
European Tethys.
Xiphotheca (?) spinellifera
Bragin n. sp.
(Fig. 13J, K)
Holotype. — Fig. 13J, GIN'4858-3, Cyprus, Agia
Varvara Village, Mamonia Complex, Upper Triassic,
Iower Norian.
Etymology. — Spinellifera (Latin), wearing small
spines.
Occurrence. — Upper Triassic, Iower Norian,
Cyprus.
Dimensions (based on three specimens). — Length
of test 700 pm, maximal width of abdomen 150-
180 pm, maximal width of the second postabdominal
chamber without équatorial spines 165-225 pm.
Description
Test large, very long, multicyrtoid. Cephalis
small, dome-like. Thorax small, hemispherical.
Cephalis and thorax without distinct pores.
Abdomen large, inllated, with equatorially arran-
ged thin .short spines. First postabdoniinal seg¬
ment iwice smallcr than abdomen, without
spines. Second postabdominal chamber larger
than abdomen, ïnflared, with equatorially arran-
ged spines thaï ,are longer and ihicker than spines
of abdomen. Three last postabdominal chambers
smaller than abdomen, nioderately inflated,
without équatorial spines, Last segment with
small spines around open, small, subcircular
aperture. AH postthoracic segments with small
subcircular pores in polygonal irregular pore
frames.
Remarks
Xiphotheca (?) spinellifera Bragin n. sp. differs
from other descrihed species oï Xiphotheca De
Wever bv the presence of équatorial spines and
by srrong inflation of the second postabdominal
segment, This form differs from représentatives
of Syringociipsa Neviani by weU-dcvclopcd seg¬
mentation of postabdominal part. The taxono¬
mie positions oï Xiphotheca (?) spinellifera Bragin
n. sp. is still unclear.
Xiphotheca sp.
(Fig. 13D)
Remarks
This form has strongly inflated first postabdomi¬
nal chamber. The tubular part of test begins
from the third postabdominal chamber.
Xiphotheca (?) sp.
(Fig. 13H)
Remarks
Only long fragments of tube without apical part
were found. Tube without segmentation, with
very small pores and thîn longitudinal curved
and bifurcated ridges is very characteristic and
unknown among other représentatives of
Xiphotheca De Wever.
Genus/.Æx/orww Blome, 1984
Type species. — Laxtomm hindei Blome, 1984.
Laxtorum (?) sp.
(Fig. 14F, J)
Description
Test multicyrtoid, spindle-shaped. Cephalis
small, dorne-shaped, poreless, .sinooth. Thorax
subtrapezoidal, poreles.s, smooth. Postthoracic
segments short, inflated, divided cach from other
by wcll-devcloped deep and narrow stricturcs.
Width of segments slowly increasing up to the
tenth segment and become decreasing at the dis¬
tal part of test. Each postthoracic segment has
GEODIVERSITAS • 1999 * 21 (4)
567
Bragin N. Yu. & Krylov K. A.
numerous small circulât pores. They form single
transversal row at strictures between segments.
Remarks
This form differs from other représentatives of
genus Laxtorum by absence of apical horn and
weak development of pores.
Genus Triassobipedis Koziir, 1984
Type SPECIES. — Triassobipedis halatonica Kozur,
1984.
Triassobipedis (?) sp.
(Fig. 10D,H)
Re,marks
These small forms hâve two basal fcet like repré¬
sentatives of généra Triassobipedis Kozur and
Bipedis De Wever. They hâve characteristic tubu-
lar distal part of test thar is sometimes longer
than basal fect. Both illustrated specimens hâve
imperfeci préservation. Characier of cephalic
structure and segmentation ol test are unclear.
Nassellaria gcn.. et sp. indet.
(Fig. Î3F)
Descripi’ION
Test multicyrtoid. Céphalothorax subconical,
smooth, without stricture between cephalis and
thorax, wirh apical horn and three latéral horns.
Ail horns short and .smooth. Abdomen inflatcd,
subspherical, divided from rhorax by deep stric¬
ture. Postabdominal part suhcylindrical. Abdo¬
men and postabdominal part wirh numerous
subcircular pores enclosed in hexagonal to penta¬
gonal pore frames.
Remarks
Only lew specimens were found. They did not
show affinity with any Triassic lorm described
before.
Acknowledgements
We are gratefui to Prof P. De Wever for valuable
advice at the beginning of this study. We thank
Dr. S. Gorican for many important comments
and improvement of manuscript. This work was
SLipported by Russian Science Foundation, grant
97-05-64646.
REFERENCES
Blome C. D. 1983. — Uppcr Triassic C^apnucho-
sphaeridae and Capnodocinae (Radiolaria) From
East-Central Oregon. Micropaleontulogy 29 (1):
11-49.
— 1984. — Uppcr Trias.sic Radioldria and radiolarian
zonarion from Western Norrh America. Bulletins of
American Palcontology 85(1): 1 -88.
Bragin N. Yu. 1991a. — Radiolaria and Lower
Mesozoic un rts of the VSSR east régions. Nauka,
Moscow, 125 p. [in Russian J.
— 1991b. — Carnian radiolanan assemblage Irom
vülcanogenous-chori deposîts of rhe Ekonaî
Terrant (Kotyak Higblaiid). [zvestiya Akademii
Nauk SSSRh svriya gecdogicheskaya 6; 79-86 |in
Russian).
Bragin N. Yu. & Kiylov K. A. 1996. — Srratigraphy
and liihology of the Upper Triassic deposits of
soudiwestern Cyprus (Vhmbouros Formation).
Stratigrapfry and geological corrélation 4 (2): 28-37
[in Ru.ssian with English translation).
Carter E. S. 1993. — Biochronology and Paleon-
tology ol uppermosi 4 riassic (Rhaetiun) radiola-
ri;ins, Qaeeit Charluitc Islands, British Columbia,
Canada. Mémoires de Géologie, Lausanne, 11,
'"5 P;
Carter E. S., Orchard M. J.. Fozer E. 1. 1989. —
Integrated ammonoid-conodont-radiolarian bio-
stratigraphy. Lace Triassic Kunga Group, Queen
Charlotte Islands» Bricish Columbia. Carrent
Research^ Part IL Geological Siirvev ol Canada,
Paper 89-111:23-30.
De Wever P. 1982. — Radiolaires polycystines du
Trias et du Lias de la Tctliys. Paris. Société
Cn’oiogicfue du Nord, Publication, 7. .^03 p.
De Wever IL, Sanfilippo A,, Ricdel W. R. îk. Gruber
B. 1979. — ITiassic Radiolaria hom Greece, Sicily
and Turkey. AUnopaleontology 25 (1): 75-110.
Dumitrica P. 1978. — Triassic Palaeo.scenidiidac and
Entacriniidae from the Vicentian Alps (haly) and
easrern Carpathians (Rtmiania), Dari de Scama
Sedintehr, [nstitutul de Géologie si Gèoftzicn 64:
39-54.
Gorican S. N Buser Z. 1990..— Middle I riassic
ladiolarians from Slovenia (Yugoslavia). Geologija,
Ljubljana 31-32: 133-197-
Grapes R. H., Lamb S. K., Campbell H. J._, Soorli B.
Simes J. E. 1990. — Geology of tne red
fûckS'turbidirc a-ssociation, WclÜneion pciiinsula,
New Zealand. NcîV ZeaLtnd JournalofGeology and
Geophysics 377-391.
Halamic J. & Gorican S. 1995. — Triassic radiola-
rites from Mts Kalnik and Medvednica
568
GEODIVERSITAS • 1999 • 21 (4)
Early Norian Radiolaria from Cyprus
(Northwestern Croaria). Geologia Croatica 48(2):
129-146.
Knipper A. L., Satian M. A. & Bragia N. Yu.
1997. — Upper Triassic-Lovver Jurassic
Volcanogenic and Scdimcnrary Deposits of the Old
Zod Pass (Trin.scauca.sia)t Stnttigrap/yy aruJ geologi-
cal corrélation 5 (3): 257-264 [in Russian with
English translation].
Kozur H. 1984. — New Radiularian taxa front the
Triassic and jurassic. (Icologish Palnontologishe
Mitteilungen fmishruck 13 (2): 49-88.
Kozur H. & Mostler H. 1972. — Beirrage zur
Erforschung der Mcsozoi.schen Radiolaria. T. l.
Révision der Obcrfamilic Coccodiscacca Haeckcl,
1862 emend. und Beschreibung ihrer triassischen
Vertreter. Geologish Paliiontologishe Mitteilungen
Inmbmck 2: 1-60.
— 1978. — Beirrage zur Erforschung der
Mesozoischt^n Radiolaria. T. 2: Oberfamilie
Trentatodiscacea Hacckcl 1862 emend. und
Beschreibung ihrer triassischen Vertreter. Geologish
Palèiontologishe Mincilungen hni^bruck 8: 123-1S2.
— 1979* — Beirrage zur Ertorschung der
Mesozoichen Radiolaria. T. lll. Die Oberfaniilien
Actinommacea Haeckcl 1862 entend.> Artiscicea
Hacckcl 1882, Multiarcuscllacca nov. der
Spumellaria und triassische Nasscllaria. Geologish
Palaontologi-she Mitteilungen Innsbruck 9, 112:
1-132.
— 1981. — Beirrage zur Erfor.scbung der mesozoi-
chen Radiolarien. Teil IV. l'hala-ssosphaeracea
Haeckcl, 1862, Hexasrylacea Haeckel, 1882
emend. Pettushevskaya, 1979, Sponguracea
Haeckcl, 1862, emend. und weitere triassische
Lithocycliacea. Trematodiscacca, Actînommacca
und Nasscllaria. Geologish Paliiontologishe
Mitteilungen Innsbruck 1: 208.
— 1983. — The polyphyletic origin and the classifi¬
cation of the Mesozoic saturnalids (Radiolaria).
Geologisch Palavntologische Mitteilupigen Innsbruck
13: 1-47.
— 1990. — Saturnaliacea Dcflandre and some orher
stratigraphically imporrani R.uliolaria from the
Hetcangian of Lenggries/Isai (Bavaria, Northern
Calcareoiis Alps), Geologish PaliionPologishe
Mitteilungen Innsbp'uck 17: 179-248.
— 1994. — Anisian to middie Cainian radiolarian
zonation and description of some stratigraphically
important radiolariaiis Geologish Paiâontologisbe
Mitteilungen fnstshmek Sondetbd. 3: 39-255.
Lahm B. 1984. — Spumellarienfaunen (Radiolaria)
aus dem micteltriassischen Buchensteiner-Schichten
von Recoaro (Nordiralien) und den oberrriassi-
schen Reiflingcrkalken von Grossreifling {Osterrei-
ch)-Systcmarik-Strarigrap!iic. Müpichner Geo-
wissvnschafiliche Abhanalupigen, Reihc A. Géologie
und Palaoni'ologic, l, 161 p.
Lapierre H. 1975. — Les formations sédimcncaires et
éruptives des nappes de Mamonia et leurs relations
avec le Mavssif du Trot>dos. Mémoires de la Société
Géologique de France, Paris, 123 p*
Nakasekü K. &L NishimuraA. 1979. — Upper
Triassic Radiolaria from Southwest Japan. Science
Reports. College of General Fulucation, Osaka Univep-
sie^ilH (2): 61-109.
Pessagno E. A., Finch W. & Abbott P. 1979.
Upper Triassic Radiolaria front the wSan Hipolito
Formation, Baja California. Micropaleontology
25 (2): 160-197.
Petrushevskaya iVl. G. 1981. — Ritdiolaria NasselLtria
of the World Océan. Nauka, Leningrad, 406 p. [in
Russian]
Robertson A. H. F. 6i Woodcock N. H. 1979. —
Mamonia Complex, Southwest Cyprus: ev'oiution
and emplacement of a Mesozoic continental mar-
gin. Geological Society of America^ Bulletin 91:
651-665.
Sugiyama K. 1997. — Triassic and Lower jurassic
radiolarian biostratigraphy in the siliccous claystonc
and bedded chert units of the southeastern Mino
Terrane, Central japan. Bulletin of the Mizupianii
Fossil Museion 24; 79-193.
Sw'arbrick R. E. & Roberr.son A. H. F. 1980. —
Revised srrattgraphy of the Mesozoic rocks of South¬
ern Cyprus. GeologicaiMagazme 117(5): 547-563.
Yao A. 1982. — Middie Tria.ssic to F.arly Jurassic
radiolarian.s from the Inuyama Area, ('entrai Japan.
Journal of Geosctences, ()saka City University 25:
53-70.
Yeh K.-Y. 1989. — Studics of Radiolaria from Fields
Creek Formation, cast-central Oregon, USA.
Bulletin of National Muséum of Natural Sciepices I :
43-109.
— 1990. — Taxonomie studics of Radiolaria from
Busuanga Island, Philippines. Bulletin of National
Muséum ofNatural Sciences 2: l -63.
Yoshida 11. 1986, — lipper Triassic to Lower jurassic
radiolarian biostratigraphy in Kagamigahura City,
(jtfu Préfecture, Central Journal of Earth
Scicppces, Nagoya University 34: 1 -22.
Submitted for publication on 24 Febmary 1998;
accepted on 1 December 1998.
GEODIVERSiTAS • 1999 • 21 (4)
569
Cuboctostylus n. gen., a new Late Cretaceous
spicule-bearing spumellarian Radiolaria from
Southern Sakhalin (Russia)
Lubov G. BRAGINA
Geological Institute of Russian Academy of Sciences,
Pyzhevsky 7, Moscow, 109017 (Russia)
bragin@ginran.msk.su
Bragina L. G. 1999. — Cuboctostylus n, gen., a new Late Cretaceous spicule-bearing spu¬
mellarian Radiolaria from Southern Sakhalin (Russia), in De Wever P. & Caulet J.-P. (eds),
InterRad VIII, Paris/Bierville 8-13 septembre 1997, Geodiversitas 2^ (4) : 571-580.
KEYWORDS
Radiolaria,
Entactinaria,
systematics,
new raxa,
Upper Cretaceous,
Sakhalin,
spiculé.
ABSTRACT
A new spicule-bearing gcnus of Spumellaria (Radiolaria) Cuboctostylus, and
three new species — Cuboctostylus kasinzovae, C. sakhalinensis, and C trifurca-
tus, are described from the Late Cretaceous deposits of Sakhalin (Russia).
This genus bas many characters in common wich the Lower-Middle
Cretaceous genus Pyloctostylus Dumitrica, from which it differs essentially in
having no pylome and the spiculé centrally placed. The genus has aiso some
characters in common with the Paleozoîc family Polyentactiniidae and the
Cenozoic family Orosphaeridae.
MOTS CLÉS
Radiolaria,
Entactinaria,
systématique,
nouveaux taxons,
Crétacé supérieur,
.Sakhaline,
spiculé.
RÉSUMÉ
Cuboctostylus n. gen., genre nouveau de spumellaires à spiculé mitial du
Crétacé supérieur, Sakhaline du Sud (Russie).
Le nouveau genre de spumellaires (radiolaires) Cuboctostylus et trois nou¬
velles espèces — C kasinzovae, C. sakhalinensis, C. trifiircatus sont décrit dans
les sédiments du Crétacé supérieur, Sakhaline du Sud, Russie. Ce taxon nou¬
veau est très proche du genre Pyloctostylus Dumitrica du Crétacé inférieur-
moyen, mais il en diffère principalement par l’absence du pylome et par la
localisation du spiculé dans la zone centrale. Le genre rappelle aussi les repré¬
sentants de la famille paléozoïque Polyentactiniidae et de la famille céno-
zoïque Orosphaeridae.
GEODIVERSITAS • 1999 • 21 (4)
571
Bragina L. G.
INTRODUCTION
The spicule-bearing Spumellaria are common in
the Palcozoic (Forcman 1963; Nazarov 1975,
1988; Isakova & Nazarov 1986) and Triassic
(Dumitrica 1978; Duminica et al. 1980; Kozur
& Moscler 1981, 1982, 1994). They are well-
known among che Cenozoic and Recenr faunas
(Hollande &: Enjumct I960; Friend &: Riedel
1967). On rhe conrrary, only few 5uch taxa werc
illustraied and described Irom the Jura-s.sic and
Cretaceous (Dumiirica 1994; Yeh 1995). During
rhe posi'Triassic cime some spicule-bearing
Spumellaria survived wich a low frequency. These
large-sized Radiolaria can be recognized only in
the case of good préservation of initial structures.
Frequent spicule-bearing forms were found in
the Upper Creraceous radiolarian assemblages of
the Southern SakhalLn. These forms hâve mor-
phological affinities wiili the Early-Middlc
Cretaceous genus Pylovtosiylus Dumitrica, 1994
and may be descendants of this taxon. The géné¬
ra Pyloctostyhis Dumitrica and (Ziiboctostylus
n. gen. hâve large eight-rayed spiculé with long
primary spincs showing morphological atfinity
with the Palcozoic Encactînaria. Many Triassic
spumellarians havc small spiculé without connec¬
tions with primary spincs (likc généra
Pseîidostylosphaera Kozur ôc Moscler, 1981,
Sepsagan Dumitrica, Kozur & Mostler, 1980)
and cannot be ancestors of the Cretaceous taxa
described herein.
GEOLOGICAL SETTING
The Upper Cretaceous key-section of the South¬
ern Sakhalin is located in the middle flow of
Naiba River (Matsumoto 1938, 1954;
Verecshagin et al. 1987) (Fig. 1). This section is
represented by thin- and coarse-grained clastics
with carbonate (calcilutite) concrétions contai-
ning abundant amnionites, inoceramids and
foraminifer.s. Several stratigraphie levels in the
intervaJ from die y\lbian to Campanian are cha-
racterized by bearing radiolarians (Kasinzova
1979, 1981; Verecshagin et al. 1987; Zonova et
ai 1993).
The Cenomanian, Turonian and Coniacian
doposits of the Naiba Section wcrc scudied and
sampled by rhe author in 1992. Several radiola¬
rian a-ssemblages with spicule-bearing radiola¬
rians wcrc found, This parc of section can be
seen in outerops at Shadrinka River and
Naidcnov Creek (wesr rributaries of Naiba River)
(Fig. 1). The upper part of Cenomanian deposits
is represented by the Naibinskaya Formation
(Unies 3, 4, 5) and Bykovskaya Formation
(Units 1, 2). The Turonian is represented by che
Bykovskaya Formation (Units 3, 4, 5 and the
lower part of Unit 6), and the Coniacian is repre¬
sented by the Bykovskaya Formation (upper part
of Unit 6 and Unit 7).
Naiba Sbci ion (Fig. l)
Naibviskaya Formation (upper part)
Unît 3. Greenish'gre}^ massive medium-grained
sandstones with inrercalarions of grey silrstones.
The ihickness of this unit is 250-300 m.
Unit 4. (Inoceramiis tychljnwajamemis zone,
lower Cenomanian-lüwer part ol middle
Cenomanian). Dark-grey massive mudstones and
siltstones wjth small carbonate concrétions with
Inocerarnus lychljawajamemfs Vcreschagin, 1967,
/. concentricus nipponims Nagao & Matsumoto,
1939, Anagatidryccrus buddha (Forbes, 1846).
The thickness of this unit is 300-450 m.
Unit 5. {bioceramus pennatulia-L gradtlis zone,
middle Cenomanian). Grey fine- to medium-
grained sandstones and grey siltstones with rare
carbonate ctmcretions and beds ot gravelires.
This iticmhcf is characterized by tnaeetamin pen-
mttulu> Pergameju, 1966, I. gradilh IVrgament,
1966, / pressul-u^ Zonova, 1980. Radiolarians are
rcprc-senccd by Cromyomma (.^) nodosa IVs-sagno,
1976, llex'dpyrurtih puntanellii Squiiubol, 1903b,
Orhiiuliformd maxima Pessagno, 1976,
Amphipyndax stvcki (Campbell & Clark, 1944),
A. ellipticus Nakaseko & Nishimura, 1981,
Diityomitra multicostata Zictel, 1876,
Ciihoctostylus sakhalinensis n. sp., C. kasinzovae
n. sp. rhe thickness of this unit is 100*150 m.
Bykotfskaya Formation (lower and middle parts)
Unit 1. (Upper Cenomanian). Alternation of
lighr-grcy fine-grained sandstones, dark-grey
siltstones and black mudstones wich abundant
shell détritus of inoceramids and numerous car-
572
GEODIVERSITAS • 1999 • 21 (4)
Cuboctostylus n. gen., a new spumellarian Radiolaria from Southern Sakhalin (Russia)
Fig. 1 . — The Upper Cretaceous section at Naiba River (Southern Sakhalin). A. stratigraphie column; B, géographie position; C. geo-
logical map of the middie flow of Naiba River; K 2 cm, Cenomanian; Kjt. Turonian; KjCn. Conîaeian; nb. Naibinskaya Formation; nb3,
third unit; nb4. fourth unit; nbS, fifth unit; bk. Bykovskaya Formation: bk1. first unit; bk2, second unit; bk3. third unit; bk4, tourth unit;
bkS. fifth unit; bk6. sixth unit; bk7, seventh unit.
bonate concrétions with ïnoccramus nippanicm
Nagao & Matsumoto, 1939, L sp. aff. /. tennis
Mantell, 1822, Gaudryceras varagnrense Kossmat,
1895 and radiolarians; Cromyomma (?) nodosa
Pessagno, 1976, CycUtstrurn satoi (Tumanda,
1989)» Dnmitricam maxweHemis Vessa^no, 1976,
Qiiadriga.strum instilsum O'Doghercv, 1994,
Savaryella ^ttadra (Foreman, 1978a),
Phaseliforvta .sp. ex gr. P. taxa Pessagno, 1972,
P suhearinata Pessagno, 1972, Cornu tel la sp.,
Paronâella sp., Stylvdruppa sp., Amphipyndax
Nalcaseko & Nishimura, 1981, À stocki
(Campbell & Clark, 1944), Archaeodictyomitra
squinaboli Pessagno. 1976, Cassideus yoloetisis
Pessagno, 1969, Neosciadiocapsa jenkinsi
Pessagno, 1975, Saturniforma abastrum Pessagno,
1970. Cuboctostylus kasinzovae w. sp., C. sakhali-
nensis n. sp., C. trifarcatus n. sp. The thickness of
this unit is 140-190 m.
Unit 2. (Upper Cenomanian). Dark-grey and
grey siltsione.s with large carbonate concrétions
with Inoceramus sp. atf /. tenuls Mantell and a
radiolarian assemblage siniilar to that in
Member 1 The thickness of this unit is 70-
150 m.
Unit 3, (Lower Turonian). Alternarion ot greeni-
sh-grey medium-grained .sandstonc.s and dark-
grey silcsrones with Inoceramus sp. aff. l. ternds
Mantell. The thickness of this unit is 60 m.
Unît 4. (Turonian). Dark-grey and black silr-
scones and mudstones with large carbonate
concrétions with Mytiloides sp. aff. M. labiatus
GEODiVERSiTAS • 1999 • 21 (4)
573
Bragina L. G.
(Schlotheim, 1813). The thickiiess of this unit is
450 m.
Unit 5. {Inoceramm hobetseiisis zone, middie part
ofTuronian). Grey siltstones with large carbona¬
te concrétions with Nippojiites mirabilis
Matsunioto, 1954, Inoceramus bobetsensis Nagao
èc Matsumoto, 1939. The thickness of this unit
is 180-200 m.
Unit 6. (hwceranms teshioensis zone, upper part
of upper Turonian-lowcr Coniaciaii). Dark-grey
siltsrones and mudstones with carbonate concré¬
tions coniaining inoc(^ramus ttshioensis Nagao &
Matsumoiov 1939» Gaudryceras dcnseplicatum
(Jimbo,. 1894) and radiolarians: Archaeospongo-
prunum cortinaensis Pcssagno, 1971b, Crucella
sp. ex gr. C plana Pessagno. 1971a, Histiasîntm
sp. ex gr. H. aster Lipnian, 1952, H. latum
Lipman, 1952» Orhiculiforrna monticelloensis
Pessagno» 1971b, PatelluUt minusculn
O’Doghercy» 1994, Patulibracchium sp. aff
P. arbucklemis Pessagno, 1971a, Phaseltfortna sp.
ex gr. P. carinata Pessagno, 1972, Spongotripus
ctfwwww/x Squinaboh 1903b, Vitoffits brustolrnsis
(Squinabol, 1903b), A'fultastrum sp.* Afens
liriodes RiedeJ bc Sanfilippo, 1974, Dictyodedalus
sp. aff D. acutii'epbalus (Squinabol. 19Û4),9L/Vwr
sp. ex gr. X. anielopensis Pessagno, 1977c, X. spi-
cularim (Aliev, 1965). Cuhoctostylus kasinzovae
n. sp., C sakbalinensis n. sp. The thickness of
this unit Ls 500-600 m.
Unit 7. Dark-grey siltstone.s and niudstones. The
thickness of this unit is 100-150 m.
SYSTEMATICS
Class RADIOLARIA Muller, 1858
Order POLYCYSTINA Ehrenberg, 1838
Suborder ENTACTINARIA
Koztir & Mostler, 1982
? Family POLYENTACriNIIDAF Nazarov, 1975
Genus Cuhoctostylus n. gen.
Type species. — Cuhoctostylus kasinzovae n. sp.
Species INCLUDED. — Cuhoctostylus kasinzovae n. sp.,
C. sakbalinensis n. sp., C. trifiircatus n. sp.
Fig. 2. — Cuboctostyius kasinzovae n. sp., suggested recons¬
truction. Scale bar: 200 pm.
EiymolOGY. — From the Greek cubo — ciibic, octo ~
cight, stylos — .spike, style.
OCCLIRFNCE, — Cenomanian to Campanian so far as
icnown.
Description
Skcleton large, with initial spiculc in the center,
and two or three conceniric Systems ot cubic
anrhe.s, the outermost wiih a subspherical latticed
shell which may be mi.ssing. Spiculé with a very
short médian bar and four spines at each end.
Spincs not dilferentiated into apical or basal.
Thcy rcsult Irom successive bifurcation in hori¬
zontal and vertical planes. Spires cylindrical in
the portion between MB and che innerrno.st Sys¬
tem of arches. Thcy rapidly increase in width
and become three-bladed outside cortical shell.
Spines with two or three verricils ol straight bars
that unité rhe spines ut two or three levels for-
ming weakly developed cube-like shclls. Spines
aJigued with the diagonal ot the cubc-likc shells.
Remarks
Cuhoctostylus n. gcn. differs from the Early to
Middie Cretaccous genus Pyloctostylus Dumitrica
hy the central position of spiculc and absence of
pylome.
The gênera Pyloctostylus Dumitrica and Cubocto-
Stylus n. gen. undoubtedly belong to the same
574
GEODIVERSITAS • 1999 • 21 (4)
Cuboctostylus n. gen., a new spumellarian Radiolaria from Southern Sakhaiin (Russia)
Fig. 3. — Cuboctostylus sakhalinensis n. sp., suggested recons¬
truction. Scale bar: 200 pm.
phylogenetic lineagc, Since Cuboctostylus n. gcn.
lias no pylome it is morphologically doser to the
Paleozoic genus Po/yentacunia Foreman
(Foreman 1963). Finding of this new genus
shows thac the spicule-bearing SpumelUria arc
much more frequent in rhe Creraceoits than was
previously supposed. Dumitrica (1994) mentio-
ned that there are many other spicule-bearing
forms in the Cretaceous which are to be descri-
bed.
Two Cretaceous spumellarian species — Falso-
cromyodrymus ? frtigosus O’Dogherty, 1994 and
F. ? nehulostis O’Doghcrty, 1994 hâve some affi-
nity with Cuboctostylus n. gen. (O Dogherty
1994). Unfortunatcly, there is no évidence of
their initial spiculc and these taxa cannoc be assi-
gned now co the new genus.
Cuboctostylus kasinzovae n. sp.
(Figs 2, 5A-G, 6D, 7D-F, H)
Hoi.OTYPE. — GIN 4845-1. Fig. 5B, .Southern
Sakhaiin, Naiba River, N.iibinskaya Formation, midd-
le Cenomanian.
EtytvIOI.OGY. — rhe species is dedicated in honour of
l.udmila I. Kasinzova, who discovered the Cretaceous
Radiolaria of the Naiba sequence (south-western
Sakhaiin) and publishcd their rirst descriptions.
Fig. 4. — Cuboctostylus trifurcatus n. sp., suggested reconstruc¬
tion. Scale bar; 200 pm.
Occurrence. — Middle Cenomanian to Conîaeian
.a.s bit as known.
Dimensions. — Length of the outer cube-like shell
side 480-500 pm, length of the inner cube-like shell
side 200-250 pm, total length of spine 900-1000 pm.
Drscripi'ion
Shell âs with genus. Very short median bar with
eight spines is pJaced in rhe central part of the
shell. Robust outer shell and a single inner shell
form two conccntric cubc.s. Lcngdt of bars of the
inner shell approxiniatdy hall than of the outer
shell. Spines cylindrical in the portion beween
MB and tuner shdl, beyond ît tlirec-bladed and
increasing in thickness up to the outer shell.
Each bar of the inner cube-like shell bas one
crestenr-like apophyse at the corner. These apo¬
physes form weakly developed .seeondary .s[)heri-
cal level over inner shell. Each bar of the outer
cube-like shell bas two opposite apophyses in the
middle and few short secondary spines.
Remarks
This species differs from the species C. trifurcatus
n. sp. by the absence of trifurcations of the distal
GEODIVERSITAS • 1999 • 21 (4)
575
Bragina L. G.
Fig. 5. — A-G, Cuboctostylus kasinzovae n. sp.; B, holotype, GIN 4845-1; C, D, two foreshorîening on internai part of Shell;
E, F, fragments of Shell; G, part of B. Scale bar: A-D, 130 pm; E, F, 200 pm; C, 300 pm.
576
GEODIVERSITAS • 1999 • 21 (4)
Cuboctostylus n. gen., a new spumellarian Radiolaria from Southern Sakhalin (Russia)
Fig. 6. — A, C. Cuboctostylus trifurcaîus n. sp., spines; B. E. Cuboctostylus trifurcatus n. sp., holotype, GIN 4845-3; B, external view
of Shell; E. internai view of Shell; both two fragments belong to one specimen; D, Cuboctostylus kasinzovae n. sp., main spine;
F. G. Cuboctostylus trifurcatus n. sp., uncomplete shell; H, Cuboctostylus trifurcatus n. sp. Scale bar: A-E, 130 pm; F-H, 200 pm.
GEODIVERSITAS • 1999 • 21 (4)
577
Bragina L. G.
Fig. 7. — A, Cuboctostylus sakhalinensis n. sp., holotype. GIN 4845-2; B. C, Cuboctostylus sakhalinensis n. sp., uncomplele Shell;
D, E. Cuboctostylus kasinzovae n. sp., two fragments of one Shell; F. Cuboctostylus kasinzovae n. sp., internai cube-like Shell with
developed apophyses; G, Cuboctostylus sakhalinensis n. sp.; H, Cuboctostylus kasinzovae n. sp., fragment of shell. Scale bar:
A-C, G, 200 pm; D-F, H. 130 pm.
578
GEODIVERSITAS • 1999 • 21 (4)
Cuboctostylus n. gen.. a new spumellarian Radiolaria from Southern Sakhalin (Russia)
part of its main spines and from the species
C. sakhalinensis n. sp. by the presence of apo¬
physes at the outer and inner shells.
Cuboctostylus sakhalinensis n. sp.
(Figs 3, 7A-C. G)
HolotypE. — GIN 4S45-2. Fig. 7A, Southern
Sakhalin, Naiba River, Bykovskaya Formation, upper
Cenomanian.
EtymoloGY. — From Sakhalin, eastern Russia.
Occurrence. — Cenomanian to Campanian as far
as known.
Dimensions. — Length of the outer cube-like shcll
side 300-330 pm, lengrh of the inner cube-like shell
side 90-100 pm, total It'rigth of spine.s 600-800 pm.
Description
Large shell as wiih genus. Spines vcry long,
simple. The outer and inner .shells consist of the
horizontal and vertical bars forming the edges of
cube. Bars of the outer cube-like shell twice as
long as those of chc inner shell. Secondary spines
or apophyses on thèse bars absent.
Remarks
d’his specics differs from C kasinzovae n. sp. by
having more délicate shells without secondary
spines or apophyses. C sakhalinensis n. sp. is cha-
racterized by a more exact gcometrîcal form than
the other représentatives of Cuboctostylus n. gen.
Cuboctostylus trifiircatus n. sp.
(Figs 4, 6A-C, E-H)
Holotype. — GIN 4845-3, Fig. 6B, E, Southern
Sakhalin, Naiba River, Bykovskaya Formation, upper
Cenomanian.
EtymüLOCîY. — From the Latin tri — Û\xcty furcatus —
flircate.
Occurrence. — Middle to upper Cenomanian so
far as known.
Dimensions. — Length of sidc*s ofthe outer cube-like
shell 300-350 pm, length of sides of the inner cube-
like shell 80-100 pm, total length of spines 800-
900 pm.
Dem:ription
Shell -sub.sphericaJ with eight ver)^ long trifurcate
spines. Spiculé wdth very short médian bar is
siruaied in the central part of the shell. Spines
cylindrical in the position between MB and
inner cube-like shelL They become three-bladed
in the portion between inner and outer cube-like
shells and rapidiy increa.se in widih. Oulside the
outer tube-like shell spines hâve a constant
width, They hâve deep and narrow grooves and
thick rounded ridges. Each spine divides into
three rerminations with same trcloil-likc cross-
section. Outer cube-like shell bars hâve nume-
rou.s apophyses forming base of a latticed
subspherical shell.
Re.marks
This species differs from C. sakhalinensis n. sp.
and C kasinzovae n. sp. by the trifurcation of
spines, trefoil-like cross-section of chc distal por¬
tions of main spines and by the presence of a lat¬
ticed outer subspherical shcll.
Acknowledgements
I woiild like to thank P. De Wever who gave
valuable recommendations in the early beginning
of this work. The manuscripi has been conside-
rably improved by the critical reading of
P. Dumirrica, E. Urquhart, and A. Ohler. This
work M'as suppocted by the Russian Science
Foundation (Grant 97-05-64646).
REFERENCES
Dumitrica P. 1978. — Family Eptingiidae n. fam.
extinct Nassdlaria (Radiolaria) with sagital ring.
Dari lie Seama alv ^e/iintehr, Institutul de Géologie si
Geafizica-Paleontologie 54 (3): 27-38.
— 1994. — Pyloitostylus n. gen., a Crctaceous
Spumellarian RaJiolarian genus with initial spiculé.
Revue de murofyaleomology 57 (4) : 235-244.
Dumitrica P., Kozur H. &c Mosrler H. 1980. —
C-tmtribution to the radiolarian taiina of rhe Middle
l'riassic of the Southern Alps; Geologisbe-
Pakionwlogishe Afirteiltmgen,\nx\shï\xcV 10(1): 1-46.
Foreman H. 1963- — Upper Devonian Radiolaria
from the Fluron Member of the Ohio shale-.
Mlcropakonioloyy 9 (3): 267-304.
Friend J. K. & Riedel W. R. 1967. — Cenozoic oro-
sphaerid radiolarians from tropical Pacific sédi¬
ments. Micropaleontology 13 (2): 217-232.
GEODIVERSITAS • 1999 • 21 (4)
579
Bragina L. G.
Hollande A. & Enjumec M. 1960. — Cytologie, évo¬
lution et systématique des Sphaeroides (Radio¬
laires). Archives du Muséum national d'Histoire
naturelle, Paris, série 7, 7 : 1-134.
Isakova T. N. & Nazarov B. B. 1986. — Late
Carboniferous-Early Permian stratigraphy and
microfauna oF Southern Urals. Transactions of
Geological Institute, Academy of Sciences SSSR,
Moscow, 402, 184 p.
Kasinzova L. I. 1979. — Campanian Radiolaria of the
Western Sakhalin mountains: 93-100 [in Russian],
in Zharaojda A. I. (ed.), Fossil and recent Radio¬
laria, Zoological Institute, Academy of Sciences
SSSR, Leningrad.
— 1981. — Cenomanian Radiolaria of the Western-
Sakhalin mountains: 88-91 [in Russian], in
Zhamojda A. I. (ed.), Systematicsy évolution and
stratigraphie importance of Radiolaria. Nauka,
Moscow.
Kozur H. & Mostler H. 1981. — Beitrage zur
Erforschung der mcsozoischcn Radiolarien. Teil.
IV: Thalassosphaeracca Hacckel, 1862, Hexa-
stylacea Haeckel, 1882, cmend. Petrushevskaya,
1979, Sponguracca Hacckel, 1862 emend. und
weiterc triassischc Lithocycliacea, Trematodiscacea,
Actinommacea und Nassellaria; Geologishe-
Palàontologishe Mitteilungen, Innsbruck, Sonder-
band 1: 208.
— 1982. — Entactinaria subordo nov., a new radiola-
rian suborder. Geologishe-Paliiontologishe Mittei¬
lungen, Insbruck 11/12: 399-414.
— 1994. — Anisian to middlc Carnian radiolarian
zonation and description of some stratigraphically
important radiolarians, Geologishe-Palaofîtologishe
Mitteilungen, Insbruck, Sonderpand 3: 39-255.
Matsumoto T. 1938. — Zelandites, a genus of
Cretaceous ammonites. Japanese Jourtial of Geology
and Geography 15 (3-4): 137-148.
— 1954. — Selected Cretaceous leading Ammonites
in Hokkaido and Saghalien: 243-324, in The
Cretaceous System in the Japanese Islands. Japan
Society Prom. Sciences, Tokyo.
Nazarov B. B. 1975. — Lower and Middle Paleozoic
radiolarians of Kazakhstan (research methods, sys-
tematics, stratigraphie importance). Transactions of
Geological Institute, Academy of Scietîces SSSR,
Moscow, 275, 204 p. [in Russianj.
— 1988. —Paleozoic Radiolaria, in Practical tnanual
of microfauna of the USSR. Volume 2. Nedra,
Leningrad, 232 p. [in Russian],
O’Dogherty L. 1994. — Biochronology and
Palconiology of Mid-Cretaceous Radiolarians from
Northern Âpennines [Italy and Betic Cordillera
(Spain)]. Mémoires de Géologie, Lausanne 21 :
1-415.
Vereeshagin V. N., Budrin V. S., Zonova T. D. et al.
1987. — The Cretaceous key-section of Sakhalin,
(Naiba section), Poyarkova Z. N. (ed.). Nauka,
Leningrad, 194 p. [in Rassian).
Yeh K. Y. 1995. — Feriestrula n. gen., Lower Jurassic
internai spicule-bearing spherical radiolarians from
Easr-Ccntral Oregon. Bulletin of the national
Muséum of natural Science, Taiwan 6; 91-105.
Zonova T. D, Kasinzova L. I. ôz Yazykova E. A.
1993. — Atlas of the Cretaceous key-fossils of
Sakhalin. Nedra, Sankt-Peterburg, 326 p.
Submitted for publication on 24 Fehruary 1998;
accepted on Î8 September 1998.
580
GEODIVERSITAS • 1999 • 21 (4)
A Middie Devonian radiolarian fauna from the
Chotec Limestone (Eifelian) of the Prague Basin
(Barrandian, Czech Republic)
Andréas BRAUN
Institute of Paleontology, University of Bonn,
Nussallee 8, 53115 Bonn (Germany)
pal-inst@ uni-bonn.de
Petr BUDIL
Cesky geologicky ustav,
Klarov 3, 118 21 Praha 1 (Czech Republic)
budil@cgu.cz
Braun A. & Budil P. 1999. — A Middie Devonian radiolarian fauna from the Chotec
Limestone (Eifelian) of the Prague Basin (Barrandian, Czech Republic), in De Wever P. &
Caulet J.-P. (eds), InterRad Vlll, Paris/Bierville 8-13 septembre 1997, Geodiversitas 2^ (4) :
581-592.
KEYWORDS
Radiolarians,
Middie Devonian,
upper Eifelian,
Barrandian,
Chotec Limestone,
Kacak evenr.
ABSTRACT
The occurrence of radiolarian faunas in the upper part of the Chotec
Limestone is discussed in terms of fâunal composition, systemarics and geo-
logical implications. The most common entaednid species arc treated syste-
marically. The occurrence of radiolarians in large numbers in the rock
succession began approximatcly 2 meters below chc onser of rhe black shale
sédimentation (Kacak Member). The abrupt sedimentological change, corn-
monly viewed as an event therefore does not coincide with the faunal turno¬
ver, leading to a radiolarian dominance well before the onset of black shale
déposition.
MOTS CLÉS
Radiolaires,
Dévonien moyen,
Eifelien supérieur,
Barrandien,
Calcaire de Chotec,
Kacak Formation.
RÉSUMÉ
Une faune de radiolaires du Calcaire De Chotec (Devonien moyen, Eifelien
supérieur) du bassin de Pra^e (Barrandien, République tchèque).
La présence de faunes de radiolaires dans la partie supérieure du Calcaire de
Chotec est discutée en tenant compte de la composition faunique, de la sys¬
tématique et des implicadons géologiques. Les espèces d’entaednés les plus
communes sont traitées systématiquement. Les radiolaires sont présents en
grand nombre dans la .succe.ssion sédimentaire environ 2 mètres au-de.ssous
des premiers schistes noirs (Kacak Formation). Le brusque changement de
sédimentation ne correspond donc pas comme habituellement à un change¬
ment faunique, comme l’indique cette dominance des radiolaires bien avant
le début de Faccumuladon des schistes noirs.
GEODIVERSITAS • 1999 • 21 (4)
581
Braun A. & Budil P.
INTRODUCTION
The Paleozoic area around Prague is a famous
and classical région for many investigations in
paleoiitology and biostratigraphy. The occurren¬
ce of radiolatians in certain rocks cspecially of
Silurian âge has been commonly mentioned
(Rodic 1925; Prantl 1949) and some very detai-
lcd pétrographie studies hâve been carried out
(Rodic 1931). Although typical radiolarian rocks
(radiülarian chens, Jydites) are not very common
especially in ihc Devonian sequence it has been
known for some décades, ihar some lirhologies
may bear radiolarian skeletons in significant
amounts (Fabian 1933). The fiict,. rhar some of
the sedimeiuary rocks in the Baudndian area
bear well preserved radiolatians, is not well
known. although in cases whcre préservation is
good such occurrences might be of spécial
importance for our knowledge of stratigraphy
and development of radiolarian faunas during
the Silurian and Devonian. The fauna that is
figured and partly described in this paper has
been considered in rwo earlier papers (Cejehan
1987; Budil 1995). The présent paper intends to
supply some addional information, observations
and a sy.stematic treatment of the common
entactinid species in these faunas. The spécial
lithologie framework in which these faunas occur
may be woith noting in the context of the “bioe-
vent character” of the Kacak .sequence (and the
“otomari-event", cf.Walliser 1984), immediately
overlying the source rocks of our faunas.
CZECH REPUBLIC
Fig. 1. — Distribution of the Kacak Member (in black) In the
Barrandian area and géographie situation of the discussed loca-
Hties.
dings of radiolarian faunas corne from rocks 4 m
below the Kacak sequence (Budil 1995)^
2. Knezi hora liill near Karlstejn. This localtty,
although offering a good sequence through the
uppermost Chotec Limestone and the base of the
Kacak Member in its typical development, liad
noi been studied in detail unril quire recently
(Budil 1995: 4-8). Radiolatians are even better
preserved here ihan those from the Hlupocepy
railway eut, Our sainpie cornes from two limes¬
tone beds approx. 2 m resp. 1 m below the
Kacak base (beds -10/-12 and -20).
LOCALITIES (cf. Figs 1,2)
Radiolarian bearing rock samples corne from two
localities situaied near Prague:
1. Railway eut in Praha 5-Hlupocepy. This expo-
sure has been figured and described several times
(e.g., in Budil 1995: 2-4; Chlupac 1960, 1993).
It exposes a sucession Irom the highec part of the
Chotec Limestone until ihe Roblin beds, over¬
lying the Kacak Member. The Radiolatians hâve
been extracted from a 15 cm thick bed of Chotec
Limestone 50 cm below the base of the predomi-
nantly black siliceous Kacak sequence. Rare fin-
LITHOLOGY
The radiolarians corne from the uppermost part
of the Chotec Limestone (biomicritic limcstones
with intercaladon.s of pelbiodctritic limestones)
underlying the predominantly siliceous black
sequence. the latccr representing the so called
Kacak event (Chlupac 1989). The limestone
oceufs in beds oi thicknesscs between 5 and
30 cm. It is dai'k grcy in colour and bituminous.
The cherts of the Kacak sequence, restricted to
the area around Prague, hâve long been known
to contain radiolarians (Fabian 1933; see
582
GEODIVERSITAS • 1999 • 21 (4)
Czech Middle Devonian radiolarians
Praha-Hlubocepy Karlstejn-Knezi
raiiway eut hora Hil(
12 3 4
Fjg. 2. — Lithotogic succession ot lhe sequences exposed at
Praha-Hlubocepv raiIway eut and Karistejn-Knezi hora hlll. Note
the different Hihologic composition of lhe Kacak Member at the
two localities. 1. massive biomicriihc limeslones: 2. thin bedded
biomichtic limeslones; 3. fine bioOetrital limeslones; 4. coarse
biodeirital limestones; 5, Hlhociàstic breccia (not piesent In the
sequence shown): 6. dark calcareous claystones and clay ümes-
tones; 7. thin bedded cherts; 8. calcareous siltstones and biode-
tritic limestones with silt.
Chlupac 1960; ] 76) for changes in terminology
of the sequences). Radiolarian préservation seems
to be more favorable in the limestone beds com-
pared to the Kacak chéris.
AGE C.ONTROL
According to fàunal data, the Kacak succession
2 m above the upper Chotec Limestone was ini-
tially considered to be basal Givetian (Chlupac
1960: I^7)r and larer regarded uppcrtno.st
Eifelian ( Chlupac Ôc KukaI 1986, 1988;
Chlupac 1993). Kalvoda (1992) discusscd the
strarigraphic implications of conodonts in beds
near the hase of the Kacak sequencc which in
terms of the conodont chronology indicate an
upper Tnrtodus kackelianus zone age (near the
base of the Polygnnthm ensensis zone). In terms of
modem conodont chronologies (Sandberg &
Zieglcr 1996; Weddige 1996) ihîs zone is well
belüw the acrual Ltfelian/Givetian boundaxy. As
our samplc horizon is lücated a maximum uf 2 m
below the Kacak base our radiolarian faiina pre-
sumably also bcloiigs to the upper Tortodus km-
keliantti zone. Biidil (1995) discusses the
considered interval (Chotec-Kacak boundary
interval) in terms of the uppermost Eileliaii.
Because of the scattiry oi well preserved cono¬
donts and other faunas, the question of where
the actual Eifelian/Givetian boundary i-s siiuaicd
withiii lhe sequence has not been resolvcd. It is
clear however, thaï on the basis of rccent cono-
doni zonation schemes (Sandberg & Zicgier
1996) the radiolarian faunas discussed hcrein
stratigraphically belong to the upper Eifelian.
TECHNIQUES OF STUDY
The limestone samples were acid treated as in
any processing for conodonts, in this case with
acctic acid. Isolated radiolarians ftom the residue
hâve been eirher picked and mounied on SEM
stubs or embedded in Gaedaxfor light microsco-
py. The laiter technique serves well in the inves¬
tigation of internai structures, which are of
importance in generic and suprageneric taxono-
my of spherical radiolarians.
GEODIVERSITAS • 1999 • 21 (4)
583
Braun A. & Budil P.
SYSTEMA'riC PALEONTOLOGY
The radiolarian fauna in general is dominated by
Entactiniidae in rerms of absolute numbers and
species diversity. Ceraroikiscids and Palaeo-
sceniids arc ran:r. Ail radiolarians are exceprional-
ly well-preserved; in many of the cncactinids thc
internai siruciurcs arc présent. Whcrcas in the
CeratoikLscids several clearly different morpho-
types are distinguîshable^ the genus Pnlaeo-
scenidhm is présent only with one spccies. As thc
ceratoikiscids and palaeoscenids hâve bcen systc-
matically rteated in the paper of Cejehan (1987)
no detailed raxononiic discussions of these will
be made here. A more detailed taxonomie rreat-
ment is given (or the most common species of
eniactinids.
Matcrial figured and mentioned in ihç text (SEM
stubs, lighi microscope slides) are housed at the
collection ol the Institute of Paleontology,
University of Bonn. Coordinates given for spéci¬
mens on numbered slide.s refer to the cross stage of
a “Biolam microscope belonging to A. Braun.
Order ALBAILLELLARIA Dcflandre, 1953
Family CuiWOïKlsdDAE Floldsworth, 1969
Genus Ceratoikiscum Deflandre, 1953
emend. Holdswortb, 1969
(Fig. 3G. H)
Species of Ceratoikiscim arc pre.sent in a remar-
kably good State of présentation. At least seven
different species arc présent, but presently no
further important additions can bc made to thc
descriptions and figures iii Cejachan (1987). As
in other Systems (Siluiian, Power Carboniierous)
Ceratoikiscids are potentially uscfiil for biostrati-
graphic zonations in the Lo\ver and Middie
Devonian. The Ceratoikiscids in chis fauna show
strong similarities to the species de.scribed in
Foreman (1963) from thc North American
Famennian.
Order ? SPUMELLARIDA Ehrenberg, 1875
mon faunal consiitucnts in the investigated fau-
nas.
Genus Stigmosphaerostylus Rüst, 1892
For synonymy with Entactinia l'oreman, 1963 and
remarks sec Aitchison & Stratford 1997-
Type species — Stigmosphaerostylus notabilis Rüst,
1982.
Stigynospbaerostylus herculetis (Foreman, 1963)
(Fig. 4B)
Description
Spherical skcleton bearing six three-bladed
spines, the length of whicli is approximacely
cqiial to ihe diameter of rhe skelecal sphere.
Spines mviy be disposed ai 90“ angles to one ano-
ther or placcd slightly asymmetrical. No sccon-
dary spines bave been observed, only small
rhornlikc élévations are présent at the corners of
rbe lattice. About len faily large^ subcircular
porcs are présent per half circumferencc. The
specimen in -slide K.h. -20 AC/3, r; 22v h: 13,5
shows a bar centered internai spiculé, the spicular
rays display a rrifureation before rhey reach the
base of the spines. The specimen in slide K.h. -
20/1, r: 22, h: 19 shows an excentric double spi¬
culé.
Re MARKS
'Fhe specimens from our .samples closely corres¬
pond in mor|)holog)'^ to the paratype of S. bercu-
lea (Foreman, 1963) in Foreman (1963; pl. 1,
figs 3C, D). Gcneric détermination is based on
characterisiics of the internai structures of the
skeleton.
Stigrnosphaerostylus sp.
aff. 5. herculeaus (Foreman, 1963)
(Fig. 4C, E. H)
aff Entactinia herculea Foreman, 1963; pl. 1, fig. 3A-
D (specimen in pl. 1, fig. 3B)
Family Entactiniidae Riedel, 1967
Members of the Entactiniidae are the most com-
Description
Spherical skeleton wirh small, subangular pores
(15 to 20 per half circumferencc) and six three-
584
GEODIVERSITAS • 1999 • 21 (4)
Czech Middle Devonian radiolarians
Fig. 3. — SEM micrographs of radiolarians from the Upper part of the Chotec Limestone (upper Eifelian). Knezi hora hill near
Karlstejn. Palaeosceniidae and Ceratoikiscidae. A-F, Palaeoscenidium cladophorum Deflandre, 1953. Specimens displaying diffe¬
rent sizes and numbers of basal spinules. G. H, Ceraîoikiscum sp. Scale bars: 100 pm.
GEODIVERSITAS • 1999 • 21 (4) 585
Braun A. & Budil P.
bladed spines dlsposed approximately ar right
angles to one anorher. The length of rhe spines
varies from one co one time and a half rhe dia-
meter of the skcleral sphere. Small tliorn-like by-
spines are présent on rhe edges of the skelcraJ
framew^ork.
Remarks
This taxon summarizes the entactinid morpho¬
types characterized by a spine morphology simi-
lar to S. herculeus (Foreman, 1963) but uni-
formly having smaJler and more niimerous pores.
The character of pore size and number was
observed hcrc to be not higWy variable and tran-
sitional between morphotypes, whereas length
and widtli of spines wAh found to be much more
variable. We therefore do not include the spccies
with small pores into S. htrculea ,as bas been
donc by Foreman (1963)» but place it in a diffe¬
rent, presumably closely related species.
Stigmosphaerostyliis sp.
aff. proceraspinus (AitchLson, 1993)
(Fig- 41)
Description
Sphericai skelccon possessing a larrice-shell and
six rhree-bladed spines, one of which is conside-
rably longer rhan the ochers. The longer spine is
slightly rw'isted along its axis. Lattice with roun-
ded pores of irregular size (about 10 per hall cir-
cumferencc). Tire speeimen in slidc Kh -20/1,
r: 20.5, h: 26.5 displays a wcll preserved internai
double spiculé, the center of which is placed
excentrically towards the large spine.
COMPARISON and remarks
Generic assignment is based on characterisiics of
the internai skelcTon. There are several externally
very similar species characterized by an internai
sphere and thcrcforc referred to Trilnnche Hinde,
1899 (ex Entactinosphami Foreman, 1963) in the
lirerature. In pore size and general shapc our
material is similar to some specimens of 5. proce¬
raspinus (Aitchison 1993: 113, pl. 6, fîg. 1).
Other spécimens refeired to the sa me taxon in
Aitchison (1993. pl. 7, fig. l) hâve much longer
and more equally sized spines and arc prcsumably
not conspecific with our material. Considering
the smalier pores in the lattice sphere of the type
of E. pYoceraspina Aitchison, 1993, wc leave the
spécifie désignation open, but place our material
in clo.se connection to S. proceraspinus.
Stigfnosphaerostylusl sp.
aff. S, hysti'icuosus {Asic\nsony 1993)
(Fig- 4F, G)
Description
Small sphericai skeleton possessing six long
chree-bladed spines. The length of the spines is
more ihan chree cimes the diameter ot the skele-
tal sphere.
Each spine bears a set of tlirec spinules at one
half of their length, each spinule being placed on
one of che spine blades. A few specimens in light
microscope slides possess reninants of more spi¬
nules (slide K.h. -20/2, r: 23-5, h: 26) which are
not ahvays disposed at the same levcl of the
spines (slide K.h. -20 AC/3> r: 20.5, h: 17). The
spécimen in slide K.h. -20 AC/1, r: 26, h:
22 show.s a distal hifurcation in some of the spi¬
nules. rhe skeletal lattice possesses fairly large,
polygonal pores of irregular size (four to six per
half drcumlerencc).
COMPARISON AND REMARKS
Aitchison (1993) dcscribed several entactinid
species possessing main spines with spinules from
the Frasnian of Western Australia. Only in
S. hysrriaiosus (Aitchison, 1993) however the size
relations of the central shcll and spines aie com¬
parable with our Bohcmian material. In contrast
to the type material of hystrituosus, only a few
of our Specimens possess more than a single lier
of spinules on tlieir main spines wheras 5’, hyslri-
cuosus is regularly characterized by several tiers of
spinules. Concerning the externally similar mate¬
rial described as Entactinui additiva ? Foreman,
1963 by Nazarov et âl, (1982), we refer to the
remarks in Aitchison (1993; ! 13).
Genus 7r/Zo«r/?c Hinde, 1899 emend. Foreman,
1963; Aitchison &: Stratford, 1997
For synonymy with Entactinosphaera Foreman 1963
and further taxonomie discussions see Aitchison &
Stratford (1997: 373).
586
GEODIVERSITAS • 1999 • 21 (4)
Czech Middie Devonian radiolarians
Fig. 4. — SEM micrographs of radiolarians from the Upper part of the Chotec Limestone (upper Eifeüan). Knezi hora hill near
Karlstejn. A, Trilonche ? echinata (Hinde, 1899) sensu Foreman, 1963; B, Stigmosphaerostylus herculeus (Foreman, 1963): C, E, H,
Stigmosphaerosiylus sp. aff. S. herculeus (Foreman, 1963); D, Trilonche sp. aff. T. riedeli (Foreman. 1963); F, G,
Stigmosphaerostylus ? sp. aff. S. hystricuosus (Aitchison, 1993); I, Stigmosphaerostylus sp. aff. S. proceraspinus (Aitchison, 1993).
Scale bars: 100 pm.
GEODIVERSITAS • 1999 - 21 (4)
587
Braun A. & Budil P.
Type species. — Trilonche vetusta Hinde, 1899.
Trilonche sp.
affi TT (Foreman, 1963)
(Fig. 4D)
Description
Fairly large sphcrical skeleton possessing eight
narrow three-bladed main spines and numerous
small pores. The spines are narrow and only
indistinctiy three-bladed. Small acute rhorn likc
by-spines are arlsing from the edges of the latrice
sometinies giving ri,se to a délicate meshwork
pardy covering the pore bearing skelecal latrice.
Light microscope slides (K. h..-20/l| r; 24,
h: 21) show an internai sphere.
Remakks
The spécifie désignation has been done on the
basis of the characteristic spine morphology as
well as on the basis of the overall morphology of
the sphcrical skeleton. Pore size however in the
type material in Foreman (1963, pl. 5, fig. 4 A-
C) is larger and the number ot spines in
Foreman'.s material is smallcr (only six compared
ro eight in our material), The specimen from the
Frasnian oi Western Australia figured as
}Spongefitavtinella sp. 1 GSWA F44073 in
Aitchison (1993, pl. 7, fig. 5) is exccrnally very
similar to our material.
Trilonche ^ echinata (Flinde, 1899)
sensu Foreman 1963
(Fig. 4A)
Description
Medium sized sphcrical larrîced skeleton posses¬
sing six three-bladed main spines bc-sides long
rod-likc by-spines. The length of the main spines
is exccedmg the diâmeter of the central skeleton,
the length of the by-spines approximately cquals
the skeletal diameter. Latiice shell with smaJl.
regularly sized, angular pores (about 20 per half
circLimference).
Rkmarks
The species désignation is based on the morpho¬
logy of che spines in the sense used by Foreman
(1963). Generic assignment remains questio-
nable as no internai structures could bc found.
The spine morphology in this taxon has in our
material been found to bc a constant character
wiihout grear variabilicy and transitions to other
species. Similar material has been figurcd and
described as Entactinosphaera echinata (Hinde)
(now T. cchinàta by synonymy) by Aitchison
(1993: 113, pl. 3, figs 6, 11, 14, pl. 7, fig. 3)
from the Frasnian uf Western Australia.
Order Incerrae Sedis
Family PamEOSCENIIDAH Riedel, 1967
entend. Goodbody, 1986
Genus Palaeoscenidium Deflandre, 1953
Palaeosceniditim cladophorum Deflandre,
1953
(Fig. 3A-F)
Remarks
The figures show the skeleton of R cladophorum
in various orientations. Four distinct apical
spines are présent The development of spinules
on the basal spines is variable both in sîze and
density. R cladophorum is aiso common in
Frasnian (Aitchison 1993)» Famennian (Foreman
1963; Schmidr-Effing 1988; Kiessling &
Tragelehn 1994) and Lower Carboniferous
(Braun 1990) radiolarian faunas (up to che
Albitillella dejlandrei zone of the radiolarian zona¬
tion in Braun & Schmidc-Effing ( 1993)
RELEVANCE OF THE FAUNA IN THE
EVOLUTIONARY CONTEXT
Radiolarians from the Upper Silurian and the
Upper Devonian are difterent in various aspects.
One of the main dilfcrence.s is the suprageneric
composition ot the spherical radiolarians, which
bclong to the Entaciiniidae in rhe Upper
Devonian (and are prédominant at leasc in che
Upper Palcozoic) and to other distinctiy different
groups in the Silurian (Inaniguttidae Nazarov &
Ormiston, 1984, Rota.sphaeracea Noble^ 1994
and other groups not yet taxonomically separa-
ted). Looking at spherica] radiolarians only, the
impression arises, that there was a kind of “major
turnover’ somewherc during the Early or Middle
588
GEODIVERSITAS • 1999 - 21 (4)
Czech Middle Devonian radîolarians
Devonian, Icadiiig co ihe disappearance of the
Silurian Sphacicllaria and ihe prédominance of
thc Entactinids. Bascd on these obser\'ations pos¬
tulations of a sharp faunal change during Early
or Middle Devonian hâve been made (Nazarov
6C OrmisTon 1986). Recenc findings of well-
preserved radiolarian faunas from this interval
indicate however chat this trend was more gra¬
duai than originally assumed (Furutani 1983;
Kiessling 5C Tragclchn 1994). Descriptions of
well-preserved faunas are of ga*at importance for
any further considciation ot tins time interval in
radiolarian évolution. In ternis of this question,
the spherical radiolarians of thc upper Eifelian
fauna prescntly treated are “complerely’ modem
with respect to Upper Devonian and Carbo-
niferoLis to Permian faunas. Thcre are no rem-
nants of groups of higher raxonomic level charac-
terLstic for the Silurian as far às our investigations
hâve proceeded. I hiis, the major Silurian groups
must hâve disappeared before the Late Eifelian
and by that time the Entacrinids must liavc gai-
ned their numéral prédominance and modernity
of their morphologie characters. This évolution
probably rook place durîng ihe Early Devonian,
still devoid of any radiolarian fauna well enough
preserved to makc subsranciaied statements on
the taxonomie constitution. Probably, future
investigations will be successfui in lînding wcll
preserved faunas in uppermo.se Silurian and
Lower Devonian strata in thc Barrandian area.
The présence of uppermost Silurian (Pridolian)
radiolarians in limeslone.s of ihis area lias been
proven [Literature data and marerial donared by
Dr. H, Jaeger, Berlin (!)]> but other well preser¬
ved material nceds lo be found (or lurtlier work
and other llthologies in the Lower Devonian
need to be investigated.
h is worth noting, that the seemingly sharp diffé¬
rence between Upper Silurian and Upper
Devonian radiolarians exisrs only in the spherical
radiolarians, According to thc material coUected
up to now, Ceratoikiscids develop at a fairly
constant rate from their first known occurrence in
the Wenlockian. and the spicular Palaeosceniidae
are seemingly only going througli a décline becau-
se this group is présent in Upper Silurian faunas
with considerably greater taxonomie variety
(Goodbody 1986; Àmon et ai 1994).
Lithology Radiolarians
Fig. 5. — Schematic représentation of the observed différences
between lithologie and faunal change near the Chotec
ümestone-Kacak Member boundary.
GEOLOGIC SIGNIFICANCE (A. Braun)
Conspiciious change in sedimentary composition
between the Chotec I.imesrone and thc Kacak
seqiiencc is a feature .similar to thaï of niany sedi¬
mentary units assinged lo this time interval in
other areas (Weddige 1986: 281) and may indi-
cate somc form ol transgressive changes (sec
Housc 1984; Haas J994; Walliser 1994, 1995).
Observations of the colours and composition of
sedimenrs attributed to this stratigraphie intcrval
indicate that a transgre.ssive deepening evenr i.s
the most likely explanation for thc observed geo-
logicaJ plienomcna (Walliser 1995, fig. 3).
Transgression may have lead ro réduction in sédi¬
ment supply b}' drowning source areas ot clastic
sédiments. Planctonic organisms pcnecontenipo-
raneou.sly began to dominate the communities
because of the changes in water depth (and pro-
hably drculaiioii). This may finally have rcsulted
in the formation of “biosiliceous" deposits
within condensed sédiments, such as the cherrs
of the Kacak Member which devcloped in the
area around Prague.
Furthermore the above mentioned change in
sedimentary composition is interpreted in terms
of a short termed, abrupt event (“Kacak event”;
GEODIVERSITAS • 1999 • 21 (4)
589
Braun A. & Budil P.
Chlupac 1989: 483). The abrupt change in sedi-
nientolügical composition Irom the Chotcc
Limestone to the Kacak chert sequence scems ro
imply a similaiiy abrupt change in environmen-
tal factors and it is general opinion, thac most
“bio-events‘* coincidc with lithological changes
(“most of the global bio-events arc coiinectcd
with a litho-event, i. c. a strong lacies change";
Walliser 1995: 4). Looking at the prédominant
iithology it may scem to bc obvious in our
example ro assume a sudden bloom of radiola-
rians following a “norinar* Chotcc Limestone
organism assemblage (trilobites, renraculites,
conodonts etc.) which led to a similarly sharp
lithological boundaty beeween limestone and
radiolarian-dominatcd cherts in sections near
Prague (Hlupocepy railway eut, Barrandov), and
to some extent in uther sections as well.
The Barrandian localitics rreated in this paper
may, becausc ol iheir particular .sedîmentary
faciès concribucc to dtis discussion because the
sédiments présent here (limesrones) allow for a
good préservation of the organisms under consi¬
dération (calcarcous hard parts as well as radiola-
rian skeletons)-
The following observations can be made:
The abrupt change in sédiment type is, in terms
of paleoecology, not paralleled by an abrupt
change in Ibssil content. Prédominance and pré¬
servation of Radiolaria began ai least as early as
déposition of the uppermost 2 m unir of the
Chotec Limestones in the uppermost part of the
Chotec Limestone, typical “Chotec-Limestone"-
organisms become rater and less welLpreserved
as mentioncd by several authors. Some last
remains of the typical ‘‘Chotec Limestone fàuna"
however hâve been described from the last few
décimètres of the Chotec limestone formation
(Budil 1995). Only after such a general shift in
organism population did the abrupt change in
sedimentological realm occur.
There were biological changes wirhin the consi-
dered interval of uppermost Chotec limesrones
and lower Kacak Mcmber. In biological terms
however, gracfual ‘extinctions" and entrances in
organism ecology occur well before the clearly
visible changes in sédiment faciès and can be
observed over at least 2 m of sédiment thickness.
Disregarding the highly hypothetical question as
to how much tlrne may be reprc.sentcd by these
2 meters, it is obvious in non-turbiditic sédi¬
ments ot sedimentary basins like the Barrandian,
that the time interval neccessary for cheir déposi¬
tion cannot be called an abrupt evenr in ternis of
day.s, months or even a few years
Highcr up in the sequence (ai the Kacak base)
such ccological shifts were paralleled by changes
in the prédominant composition of the sedi-
mciifs, and it Ls quiic probable, rhat snch compo-
sitinnal changes were in our case also later
diagcnctically enhaneed lo give the sharp
contrast as scen in todays outerops.
Thu.s, the Kacak evenr. being prcsumably due to
changes tn water depth and sédiment supply lea-
ving traces în maiiy other areas, can be .shown to
hâve occurred ecologicaJly more graduaJly than
implLcd when only considering the scdimcntolo-
gical boiindarics. Thèse observations exclude
catastrophic pictures arising when tcading the
terminology sometimes used in event discus¬
sions, and contribute to the picture of many of
such events as '^müd'’ unes in the terminology of
Walliser (1995).
It is not oui* aim to cast doubi on the general
existence of telatively short-termed processes
known to be présent during the Phanerozoic
(Walliser 19951, thac changed sedimentological
characters as \sxll as the livîng conditions of orga¬
nisms and causing ccological stresses as a possible
rcason for larger scale exüncuons, organism dis¬
placements etc. And in view of ihc published
considérations on possible causes and natures of
“events" (Walliser 1995), it would surely be not
jusiificd to restrict our view of events to astetoid
impacts and lo discuss any proposed eveiu (sedi-
mentologically or organism-bascd) in the lighc of
such excraterresirial causes% which arc the excep¬
tion rather than the ruie (Walliser 1995). Thus,
we do not reject the exi.stence of ihe Kacak
“events" as long a-s the use of rhe terrn evenr does
not impiy a short terni cacastrophical happening.
Many such processes as far as we know today
seem to be closely connecccd ro changes in sea
level (Johnson étal. 1985; Ross & Ross 1985;
Walliser 1995), whatever rheir causes might hâve
been, and il is dear, that such changes could well
hâve lasted even a few million years. At least in
some cases however such changes do not coinci-
590
GEODIVERSITAS • 1999 • 21 (4)
Czech Middle Devonian radiolarians
de with lithological bouiidatics. l'his, based on
the présent observations, can be shown to be true
in the case of the Kacak event, The latrer as far as
il is represented by the typlcai (cherty) sédiments
was only the culmination of a transgressive deep-
ening, leaving its faunal traces well before the
actual Kacak scqucnce.
Acknowledgements
The authors wish to thank J. Aitchison (Hong
Kong) and R Noble (Reno) for critical remarks
and hclpful comments on an early version ot the
paper.
REFERENCES
Aitchison J. C. 1993. — Devonian (Frasnian) radiola¬
rians from the Gogo formation, Canning Basin,
Western Australia. PaLieonrographica A 228 (4-6):
105-128.
Aitchison J. C. bC Stratford J. M. C. 1997. — Middle
Devonian (Givctiali) Radiolaria from Eastern New
South Wales. Australia: a rcasscssmenc of the
Hinde (1899) launa. Neucs Jahrbuch fiir Géologie
undPaldornologie, Abh. 203: 369-390.
Amon E. O., Braun A. & Ivanov K. S, 1995. —
Upper Siliirian Radiolarians from the Southern
Urals. Geologkii et PaUcontologtai 29: 1-17.
Braun A. 1990. — Radiolaricn aus dern Unter-
Karbon Dcuischlands. Courier Forsebungsinstitut
Senckenheig 133: 1-177-
Braun A.& Schmidi-Efiing R. 1993. — Biozonation,
diagenesis and évolution of radiolarians in the
Lovver Carhoniferous of Germaoy, Murine
Micropaieontolo^ l^ : 369-383.
Budil P. 1995. — Démonstrations ot the Kacak event
(Middle Devonian, uppermost Eifclian) at somc
Barrandian localitics. Vatnik Ceskeho geologickeho
listavul^: 1-24.
Calvoda J. 1992. — The joungest Conodont fauna of
the Barrandian. Scrifua 22: 61-63.
Cejehan P. 1987. — Radiolarie Barrandicnskeho
Stredniho Devoiui (Radiolarians from rhe middle
Devonian ol ihc Barrandian, Czcchoslovakia).
Miscellaneu mktopubu'ontologu'a 2 (1): 49-70.
Chlupac I. 1960. — Srrarigraphical investigation of
the Srksko Beds (Givetian) in ihe Devonian of
Central Bohemia. Sbornik ifstredni Ustav geologkky
26: 143-185.
Chlupac I. 1989. — The Devonian of C/.ccho.slovakia
and it.s stratigraphie significancc. Canadien Society
ofPetrology and GeoUogy, Memom 14: 481-494.
— 1993. — Geology ol the Barrandian. Senckenberg
Buch 69. Verlag Waldemar Kramer, Frankfurt/M.
163 p.
Chlupac I. & Kukal Z. 1986. — Réflexion of possible
global Devonian evenrs in ihc Barrandian area,
C.S.S.R. Lecture notes Etmh Sciences 171-179.
— 1998. — Possible global events and the stnuigra-
phy of rhe Barrandian Palaeozoic (Cambrîan-
Dcyon\^,Shoi'77ikgeolùpcki.ckyi'b fW43: 83-146.
Fablan H.-J. 1933. — Radiolarienführende
Hornsreine in den Kalken von Fllubocepy.
Firgenwûld 8 (2): 49- 51.
Foreman H. P. 1963. — Upper Dewnian Radiolaria
from the lluron Membcr of the Ohio Shale.
MkropaU'ontolvgy 9: 267-304.
Furutani H. 1983. — Middle Palenzoic
Palaeosceniidae (Radiolaria) from Mt. Yokokura,
Shikoku-, Japan. Parc J. Tramactions and Proceedings
oj the Palufontologkal Sonety of Japan. N. S. 130:
96-116.
Goodbody Q. H. 1986. — Wcnlock Palaeosceniidae
and Enractiniidae (Radiolaria) boni rhe Cape
Phillips Formation oi the Canadian Arctic
Archipelago. Muropaleontolo^ 32 (2); 129-157.
Haas W. 1994. — Die Mitteldevontschen Rifle der
Eifeler Kalknuilden: 81-94, in Koenigswald W. V
ôc Meyer. W. (eds), F.rdgeschtchre hn Rhdnland.
Pfeil Verlag, Munich,
Hinde G. J. 1899. — Ün rhe Radiolaria in the
Devonian rocks of New South Walw. Geologica!
Society of London, Qitarterly Jounuil’b‘^\ 38-(î4.
Holdsworth B. K. 1969. — Namurian Radiolaria of
thé Gfiius Cenitaikisatm from Staffordshire and
Detbysbire, Enghind. M'tcrnpaUoncnlngy Î5,
221-229,
Johnson J. Ci., Klapper G. & Sandberg C. A.
1985. — Devonian eustatic flucruations in
Euramerica. Geologkal Society of Amerku, Bulletin
96: 567-587.
Kiessling W.& 1 ragtlehn H. 1994. — Devonian
radiolurian fnuna-s of Conodont dated localities in
the Frankenwald (Norther Bavaria, Germany).
Abbhandlungcn der geologischen Bundesamtalt 50:
219-255.
Nazarov B. B., Cockbain A. E.ÔC IMuyford P E.
1982. — Lace Devonian Radiolaria from rhe Gogo
Formation, Canning basin. Western Australia..
Akberinga 6 (3/4): 161-173.
Nazarov B. B.èk Ormiston A. R. 1984. — l entative
System of Paleozoic Radiolaria, in Petrushes'skaya
M, G. & Siepanjants S. D. (eds). Morphology^ eco-
logy and eimufion of Radiolarians (Materials to
Eurorad IV). Leningrad.
— 1986. —. TreiuR in the devclopnienr of Paleo/oic
Radiolaria. MarineMurnpaleontology 11: 3-32.
Noble P. 1994. — Silurian Radiolarian zonation for
the Caballos Novaculire. Marathon uplift, West
Texas. Bulletin of American Paleontolo^' 106: 1-55.
Pieeltj M. 1994. — Untersuenungen am
Kernmatcrial der Borhung “Büde.shcimer Bach"
(Kernbohrung 1) aus dem Oberdevon der Prümer
Mulde (Eifcl). Scratigraphische, sedimentpetrogra-
GEODIVERSITAS • 1999 • 21 (4)
591
Braun A. & Budil P.
phische und mikrofazielle Zusammenhànge.
Courier Forschungsinstitut Senckenberg 169:
329-349.
Prantl F. 1949. — Some Llandoverian radiolarites
from Bohemia. Vestnik Ustredniho Ustavu
Geologickeno 24: 1-5.
Riedel W. R. 1959. — Siliceous organic remains in
pelagic sédiments. Society of Economie Paleontologists
and Mineralo^sts, Spécial Publication 7: 80-91.
Rodic I. 1925. — Vorlâufiger Bericht über die
Resultate von Untersuchungen der Kieselschiefer
nordôstlich von Prag. Lotos 73; 167-171.
— 1931. — Radiolarien in Kieseischiefern
Mittelbohmens. Lotos79\ 118-136.
Ross C. K.àc Ross J. R. P. 1985. — Late Paleozoic
depositional sequences are synchronous and world¬
wide. Geology 13: 194-197.
Sandberg C. A.& Ziegler W. 1996. — Devonian
conodont biochronology in géologie time calibra¬
tion. Senckenbergiana lethaea 76 (1/2): 259-265.
Walliser O. H. 1995. — Global events in the
Devonian and Carboniferous, in Walliser O. H.
(ed.). Global events and event stratigraphy. Springer,
Berlin.
Walliser O. H., Bultynck P., Weddige K., Becker
R. T.& House M. R. 1995. — Définition of the
Eifelian-Givetian Stage boundarv. Episodes 18 (3):
107-115.
Weddige K. 1996. — Devon-Korrelationstabelle.
Senckenbergiana lethaea 76 (1/2): 267-286.
Submitted for publication on 29 January 1998;
accepted on 17 Mar ch 1999.
592
GEODIVERSITAS • 1999 • 21 (4)
Radiolarians from the cyclic Messinian
diatomites of Falconara (Sicily, Italy)
Giuseppe CORTESE
Department of Earth Sciences, University of Florence
Via La Pira, 4, 50121 Florence (Italy)
Alfred Wegener Institut for Polar and Marine Research
Columbusstrasse, P.O. Box 120161,27515 Bremerhaven (Germany)
gcortese@awi-bremerhaven.de
Kjell R. BJ0RKLUND
Paleontological Muséum, University of Oslo
Sars’gate, 1,0562 Oslo 5 (Norway)
k.r.bjorklund@toyen.uio.no
Cortese G. & Bjorkiund K. R. 1999. — Radiolarians from the cyclic Messinian diatomites of
Falconara (Sicily. Italy), in De Wever P. & Caulet J.-P. (eds), InterRad VIII, Paris/Blerville 8-
13 septembre 1997, Geodiversitas2^{4) : 593-624 .
KEYWORDS
Radiolariuv
Miocene»
Italy»
ciclicity.
ABSTRACT
The diatomitic sédiments in Falconara (6*93 to 6.08 Ma) hâve a total thick-
ness of c. 27 m, and rhe sequence is composed of 41 diatomite/claystone
couplets. The déposition of these biosiÜceous sédiments, seemingly modula-
ted by the astronomical prcccs.sion cycle (21,000 ycar.s period), ha.s bcen sug-
gested to hâve taken place in a shallow basin with diatomaceous and
ciaystone sédiments being deposited during iow and high sea level stands,
respectively. Polycystine radiolarians show major changes in the assemblage
compositions and the total abundances benveen rhe different cycles, from
being barren in Cycle 2 till > 142,000 radiolarians/g in Cycle 26.
Radiolarians arc usually not présent in the ciaystone samples» this is also the
case with diatoms. However, one ciaystone (Sll) had a significant high
number, > 43,000 radiolarians/g sédiment, while nine otliers had a Iow
content of radiolarians. We hâve in our counts recognised 68 morphot)'pes.
Q-Mode Factor anidysis has been used on the raw counting data. By using
fivc factors, wc werc ablc to explain 83.65% of the cumulative variance,
while using nine factors allowed us to explain 96.52% of rhe variance. These
nine factors displayed well-defined peaks that can be used to navigate within
the profile and to correlate between sections. Another high resolution srrati-
graphical tool could be represented by the peculiar faunal composition of
each of the diatomites. In our pilot study we selected three diatomites and
GEODIVERSITAS • 1999 • 21 (4)
593
Cortese G. & Bjorkiund K. R.
comparée! their assemblage composition and radiolarian abundances.
Cycle 11 is dominated by Stichocotys delmontensh and Lithomitra lineata-,
c. 50 and 36% maximum values rcspcctively. In Cycle 21, S. delmontensh
and Bouyostrobus auritiislaustralh are most common, with 40 and 30% as
maximum values respecrively. In both these cycles nassellarians arc tlie domi¬
nant group. In Cycle 26 Larcoidea sp-, Porodiscus sp., and Spongotrochus gla-
cialis arc the dominant taxa.
MOTS C^S
Radiolaires,
Miocène.
Italie,
périodicité.
RÉSUMÉ
Radiolaires des sédiments messiniens à diatomées de Falconara (Sicile, Italie).
Les sédiments à diatomées de Falconara (âgés de 6,93 à 6,08 milHon.s
d’annéf.s) ont une épaisseur totale d’environ 27 m. La séquence est composée
de 4l paires diatomice/argile. Le dépôt de ces sédijiients biosiliccux est appa¬
remment modulé par le cycle de précçssion astronomique (avec une période
de 21000 ans) et semble avoir eu lieu dans un bassin peu profond; le,s sédi¬
ments à diatomées et argileux correspondent respectivement à des périodes
de bas et haut niveau marin. La composition des assemblages à radiolaires
polycystines et l’abondance de ceux-ci varient beaucoup d’un cycle à l’autre,
d’absent dans le cycle 2 jusqu’à plus de 142000 radiolaires/g dans le cycle 26.
Les radiolaires, ainsi que les diatomées, sont généralement absents des échan¬
tillons argileux. Cependant, une argile (SU) a une concentration élevée
(> 43000 radiolaires/g) et neuf autres ont une faible concentration. Nous
avons compté 68 morphoiypes. Les données brutes om été soumises à une
analyse faaoricllc en mode Q. Avec cinq facteurs, nous pouvons expliquer
83,65 % de la variance cumulée, tandis que neuf facteurs sont nécessaires
pour rendre compte de 96,52 % de cette variance. Ce.s neufs facteurs mon¬
trent des maximums bien définis qui peuvent être utilisés pour naviguer le
long du profil et pour corréler les differentes coupes. Lhie autre méthode per¬
mettant une bonne résolution stratigraphique pourrait être fondée sur la
faune particulière à chacune de ces diatomitc.s. Dan.s une étude pilote, nous
avons choisi trois diatomites et nous avons comparé la composition de leurs
assemblages et leur abondance en radiolaires. Le cycle 11 c.st dominé par
Stichocorys delmonterisis et Lithomitra lineata, avec des maximum à environ
50 % et 36 % respectivement. Dans le q'cIc 21, 5. delmontensh et Botryo-
strobus uurhus/australh som les plus communs, avec des maximum à environ
40 % et 30 % rc.spcctivement. Pour ces deux cycles, les nassellaires forment
le groupe dominant. Dans le cycle 26, Larcoidea sp., Porodiscus sp., et
Spongotrochus glacialh sowi les taxons dominants.
INTRODUCTION
The biogenic siliceous sédiments of Sicily hâve
been knovvn for almost 125 years. Ehrenberg
(1854) and Mottura (1871) reported on radiola-
rians from the Sicilian Neogene, while Sauvage
(1873) described, in fairly good detail, foliated,
radiolarian bearing shale outerops near Licata
(Fig. 1). He assigned a Messinian-Zanclean âge
to them. Stohr (1876, 1878) and Schwager
(1878) studied Tortonian and Zanclean diato¬
mites and tuffs containing rich radiolarian
assemblages. Nicotra (1882) examined Tortonian
diatomites containing radiolarians near Messina.
594
GEODIVERSITAS • 1999 • 21 (4)
Radiolarians from the cyclic Messinian diatomites ofSicily
13“ 14° 15° 16°E
FtG. 1 . — LcKîation map, showing the geographical posrtion of the Falcona/a Section. The shaded area représente the Cattanissetla
Basin, while the solid line depicts (he paleo-shore line. Modified from Gautier {1994).
Cocco (1905) did the same with different litho-
logies (maris, euffs, diatomites) outeropping ar
several Sidlian localitics.
Several cruises of the Deep Sea DriIJing Project
(DSDP) and of the Océan Drilling Program
(ODP) hâve raken place in rhe Medirerranean
Sca: DSDP Legs 13, 42, ODP Legs 107. 160
and 161, and biogenic opal bearing localitics
from the former Tethys Sca area hâve been repor-
tcd on by several authors as: Sanfilippo (1971,
1974)> Sanfilippo et al. (1973), Rio et al. (1989).
Ail these authors failcd to apply rhe .standard
radiolarian biostratigraphic scheme for uopical
latitudes, or to establish a local one.
Biogenic opal is generally nor well preserved in
rhe Ncogcnc sédiments of ihe Medirerranean Sea
(Dumitrica 1973; Ricdel et al. 1985). The lutter
authors report on only cight deep-sea localities in
the Mediterranean Sea where siliceous remains
are présent in isolated levels. Morcover, ai several
of these localities the radiolarians are scarce or
présent in only a few of the samples- Further-
morc, the species that are used in the standard
low latitude stratigraphical radiolarian scheme
are found in low numbers and are often morpho-
logically different from the truc oceanic ones.
Messinian sÜiceous diatomiric oozes outerop at
many localitics in chc Caltanissctta Basin, Sicily.
These sédiments yield abundant and diversifîcd
radiolarian làunas, thus having a potcncial tor the
compilation of a new local radiolarian strarigra*
phy bascd on acme zones and peak occurrences,
through calibrations wiih other microfossjl
groiips. As wc coLild not apply the standard low
latitude bioscratigraphicaJ radiolarian scheme to
the Falconara .Section, we used Q-rnode factor
analysis to facilitate faunal comparisons hetween
samples as an alternative tool for corrélation.
This allows us ro recognise, through time. diffe¬
rent associations being indicative of spécifie cco-
logical seteings (i.e. peak occurrences), evenrs
that later may be used as a corrélation tool both
wichin rhe Falconaia Section and hetween other
sections in the Calranissetta Basin.
Hilgcn & Ivrijg-sman (1999) stress the uncertain-
ty and concroversy about horh the âge of the
Tripoli Formation and the origin of rhe cyclic
bedding (Gautier et al. 1993; Butler et ai 1995;
McClelland et al. 1996; Sprovieri et al. 1996; Vai
1997). They also summarise the following scena-
GEODIVERSITAS • 1999 • 21 <4)
595
Cortese G. & Bjerklund K. R.
Fig. 2. — Corrélation between Sprovieri et al. (1996) field*log for the Falconara Section, the polarity time*scale and the variations of
the Cp/Rp (the two nannofossil species Coccolithus pelagicus and Reticulofenestra pseudoumbilicus) ratio at OOP Site 552.
Selected bio-markers are also shown. Modified from Sprovieri étal. (1996).
rios to explain the qrclic diatomite formation as a
resuit of: (l) the intensification of Atlantic
inflow due to glacio-eustatic sea-Icvcl changes
(Van derZwaan dc Gudjonsson 1986); (2) pcrio-
dic upwcllings (Gersondc 1980); (3) surface
water warming (Broquet eml. 1981); (4) increa-
sed continental run-oft (Meulenkamp et al.
1979); (5) global sea-leve| rise in combination
with enhanced upwelling (McKenzie et al.
1979); (6) pulsating lectonics (Pedley & Grasso
1993).
With the imcertainty of the âge of the Tripoli
Formation and the exact origin of rhe cyclic bed-
ding, Hilgen Krijgsman (in prep,) conclude
that the substitution of sapropel c>'cles by Tripoli
diatomite cycles point to an orbital control on
the sedimentary cyclicity, since sapropels are
astronomically controlled (Hilgen étal. 1995;
Sprovieri er/z/. 1996).
The palaeoclimatic interprétation ot the diatomite-
claystone couplets however, differs strongly from
author to author. Sprovieri et ai (1996) suggest,
based on planktonic foraminifers, that the dépo¬
sition of claystones (or sapropels by some
authors) took place during cold periods. while a
warmcr planktonic foraminifers assemblage is
présent in the diatomites. Müller (1985)
concludes> based on nannofossil warm water spe¬
cies, thaï the claystones were depositcd during
warm periods, whüc diatomites rcllcct the
inlluence of cold periods and upwelling. Hilgen
ÜC Krijgsman (1999) conclude that the diato¬
mites (laminites) correspond to the precession
minima and sommer insolation maxima, and
that the homogenous maris correspond to pre¬
cession maximaand insolation minima.
The main goal of ihis paper is to examine the
polycystine radiolarian faima in the biosiliceoas
deposits in the Tripoli Formation as it outerops
at Falconara, Sicily (propo.scd by CoLilongo et al.
1979) as a pocential référencé section for the
Tortonian/Messinian boundary). The radiolarian
596
GEODIVERSITAS • 1999 • 21 (4)
Radiolarians from the cyclic Messinian diatomites of Sicily
fauna is rich and well-preserved in most diato¬
mites in the section and the radiolarian response
to the cyclic changes are promising for a high-
résolution biostraiigraphic and corrélation tooh
as chc radiolarian assemblages show major and
significant changes berween and within scicctcd
cycles (bulk radiolarian abondance, radiolarian
tlux, relative abundance of selected species, factor
loadings, Spumellaria/Nassellaria ratio, etc.).
Tbese severe assemblage Lhanges, in the radiola¬
rian fauna in rhe biosiliceous sédiments at
Falconara may provide information to improve
and beteer understand the oceanographical and
ecological évolution of ihe area.
STRATIGRAPHIC FRAMEWORK
In recent years Hilgen (1991), Langereis &
Dekkcr (1992), Gautier et al (1994), Suc et ni
(1995), and Sprovieri ei al (1996) hâve been
working on sédiments of Messinian age in Sicily,
whilc Flodcll et al. (1994) wotked up an age
équivalent section in Morocco.
Hodcll étal (1994) convincingly démonsrrated a
high-resolutioii isotope, carbonate, magnetostra-
tigraphic, and biostratigniphic record of a part of
the Bou Regreg Section in north-western
Morocco. The investigated drill cote covered rhe
rime spait from paleomagnetic Chron C4n par-
tim to C3r (earliest Gilbert). This represents ihe
rime leading to and including the isolation and
desiccation of the Mediterranean, i.e. the
Messinian sahnity crisis. They demunstrated that
during Chvons C3An and C3Ar (6.935 to
5.894 Ma) rhe isotope and carbt)nate signais dis-
played a quasi-periodic variation vvitli estimated
periods of 40 and 100 kyr respeciively. The
L\ 40 kyr period 3**^0 signal was inierpreied to
rcilect changes in dic global ice volume causcd
by obliqiiit}"'induced changes (4l kyr period) in
solar insolation in polar régions, They aiso
concluded that the 100 kyr period carbonate
variations were probably related to a long rcrm
modulation of the amplitude of the precessional
cycle (c. 21 k}T period) which was not resolved
due to their low sampling frequency.
The Falconara Section was First published by
Catalano & Sprovieri (1971). D’Onofrio et al
(1975), Colalongo et al. (1979), van der Zwaan
(1982), and Theodorites (1984) published on
the calcareous plankton biostratigraphy in this
section, Gersonde (1980) and Gersondc
Schrader (1984) teported on the diarom biosrra-
tigraphy, whüe stable oxygen and carbon isotope
data were provided by van der Zwaan (1982),
and van der Zwaan & Gudjonsson (1986).
Langereis et al. (1984), Hsü (1985), and
Langereis Dekker (1992) did not succeed in
establishing a paleomagnetic stratigraphie frame-
work for che section, while Gautier et al (1994)
clairned to hâve ohrained paleomagnetic results
from the Tripoli Formation
Sprovieri et al (1996) rejcctcd the paleomagnetic
results from Falconara proposed by Gautier et al
(1994). Instead they corrclatcd the palcomagnc-
tic record of ODP Site 552 (North Atlantic)
with ODP Site 654 (Thyrrenian Sea), after
having relnterpreied rhe magneiosuaiigraphic
boundaries and their âges according to the
magnctic polarity reversais record proposed hy
Cande & Kciu (1992, 1995). ’J'he abondance
fluctuations in chc Glohigerinoides population
at Site 654 were then corrclatcd to the record ol
the samc fluctuations in the Falconara Section.
ODL Site 552 from the North Adantic was used
by Sprovieri et al (1996) to obtain the paleoma-
grieric boundary âges of Chton 3An by using the
nannofüssil abundance fluctuations published by
Beauforr & Aubry (1990). Site 552 provides a
complété sequence of abundance fluctuations
(Fig. 2). forced by the asrronomical prccession
cycles from the middic latc Tortonian to che base
of Zanclean. Sprovieri et ai (1996) were able to
accuraiely corrdafe sedimenrary and biostratigra-
phic events recorded in the Mediterr.inean ba.sin
with similar events in rhe North Atlantic
(Site 552), and demonsrrated chat the âges could
be estimated by comparison widi ihe sequence of
abundance fluccuaclons linked to dic prccession
cycle. By this technique Sprovieri et al (1996)
estimated the base and top of the Tripoli
Formation at Falconara to be 6.93 Ma and
6.08 Ma rcspecTivcly (Fig. 2), which Is the age
modcl adopted in our présent paper.
This deviates signiFicancly from the age model
provided by Hilgen & Krijgsman (in prep.).
GEODIVERSITAS • 1999 • 21 (4)
597
Cortese G. & Bjorklund K. R.
Metric
Scale
25
20
15
10
5
0 '
Fig. 3.
Diatomite
code
D35
D30
D20
D 15
D 10
D5
Basal Limestone
dm Diatomite
^■iCIaystone
E^mCovered
— The 1995 field-log for the Falconara Section.
l'hcy used the position ot the first and last occur¬
rence of the planktonic foraminifer Globorotalia
nicoLie as the starting point for their tuning expe-
riment. These events hâve been astronomically
datcd at 6.829 and 6.72 Ma in sections on Crete
and Northern Italy (Hilgen et al. 1995;
Krijgsman et al, 1997) and are located in the
Tripoli cycle T9 and Tl4, respectively. Wirh
thèse âges as the starting point, ail diatomite
cycles hâve been mned to the La90^, precession
and summer insolation rime sériés (Hilgen &
Krijgsman 1999). They provide absolute âges for
ail sedimentary cycles bascd oit their astronomi-
cal calibration^ rcsulting in 7.008 and 5.99 Ma
for thé base and the top of the Tripoli
Formation. According lo ihis new âge model the
Falconara Section starts with Tripoli cycle T8
(6.847 Ma) and contains 4l cycles* (Hilgen &
Krijgsman 1999), suggesiing that Sprovieri et ai
(1996) are missing seven Tripoli cycles. In future
Work, we will u.se the new âge model of Hilgen
& Krijgsman (1999). In labié 8 we bave tabula-
ted the sample age.s according to Sprovieri et ai
(1996) and indicated ihc corrélation to the
Tripoli cycles and absolute âges according to
Hilgen & Krijgsman (1999).
MATERIAL AND METHODS
The study area covers the valley and hilly région
delimited by the Sicani, Madonie and Erei
Mountain Ranges (SW Sicily, Southern Italy),
roughiy coinciding to the Agrigento and
Caltanissetta provincial territory (Fig. 1).
Hitheno rhe best known Tcniary marine opal
bearing sédiments on Sîcily are included in the
Tripoli Formation, the so called diatomites or
laminites, which are nicely exposcd in the
Falconara Section.
ÜLir sampling program (May-June 1995 and
Augusf 1997) concentrated on the Messinian
portion of the 27 m thick Falconara Section
(Fig. 3). In 1995 we sampled a total of 30 out of
41 diatomites and 18 out of 41 ciay.stones,
(Table 2) and the remaining litbologies were
sampled in 1997. The diatomites in Cycles 7, 21
and 28 were continuousiy sampled and are inclu-
598
GEODIVERSITAS • 1999 • 21 (4)
Radioiarians from the q^clic Messinian diatomites of Sicily
ded in rhis work. The sampling of the Falconara
Section resultcd in two dififerenr sample sets:
(1) one central sample per lithological unit for
the 49 sampled Üthologies; (2) one consisting in
a conrinuous sampling of ail the diatomites
observed in the field. The maximum number ot
samples for a single diatomite wa.s 4S, resulcing
in a time-resolurion of a few hundred yeais only.
In the Tripoli formation Sprovieri et al. (1996)
referred to rhe lithological levcls and labelled the
diatomites from 1 1 to T4l and rhe inrercalated
claystones from Ml to M42, wirh every négative
or positive fluctuation in the nannoplankton flora
representing a hall-cycle. The claystones are arbi-
trarily ossutned lo represent the base of the cycles.
We hâve processed a total of 162 samples
(Tables 2-5) from rhe Falconara Secrion and
made slides for quantitative and qualitative ana¬
lyses following ihe method proposed by Goll &
Bjorklund (1974).
We selected ihc sample from tlie central part of
each sampled lithological unit for botli che diaco-
mites and the claystones, assuraing it to be repré¬
sentative for rhat lichology. Ail samples were
analyscd for their content of total organic carbon
(TOC) and calcium carbonate by ihe use of an
infrared gas analyser (LECO). This instrument
measures, by infrared absorption, the anioum of
CO, rcleased from che samples during combus¬
tion. The CaCO^ conienc was cakulated by the
dififercnce of C„„,| and multiplied by
rhe factor of 8.3 (aromic weight ratio of CaCO,
to carbon).
Samples from wirhin a single cycle hâve been
coded, when ploited (Figs 7-12), as XX.[XX
indicates rhe référencé number for the cycle
(Tables .3-5) and YY indicates the position of the
sample wirhin rhe cycle, given as a percentage of
the time elapsed from the bottom of rhe cycle].
This lias been donc in order to simplify compari-
sons between different cycles, based on the
assumption thaï tlie déposition of each cycle was
influeneed by the precesslon cycle, and therefore
took place over an average time span of
21000 years (as demonstrated, for che Falconara
Section, by T lilgen et al 1995; Sprovieri et al
1996). As a working hypothesis we had to assu¬
me that the sédimentation rate was constant
throughout the cycle, in order to calculate
TOC
Fig. 4. — TOC {Total Organic Carbon) measurements through
the section.
sample âges. Flux estimâtes are therefore based
on the assLimption that the déposition of each
cycle took place over 21,000 years. These calcu¬
lations were carried out on sédiment cubes 2 X
2x2 cm.
The Factor Analysis Method (Imbrie & Kipp
1971) and the Fortran program CABFAC
(KIovan &C îmbrie 1971) were used for rhe statis-
tical trearmetu of the data set, The Cabfac Q-
Mode factor analysis program wavS used for
grouping rhe samples in the Falconara Secrion
into varimax a.ssembldges based on the similariry
between samples. This is donc by transforming
rhe raw data into variables (the factor compo-
nents), each of which bas a set of values (the vari¬
max factor scores) giving an indication of which
species are most important in each factor.
The species rhat were treated staristically had to
occur as more fhan 2% of the total launa in at
least one sample, as rccommcnded by Imbrie &
Kipp (1971). Tbis teduced the original 68 mor¬
photypes (Table 1) counted during this study to
4l morphütypes used in the first factor analysis
run. A sélection of the morphotypes included in
our factor runs are shown in Figs 20-22.
RESULTS
The organic carbon values from the central part
GEODIVERSITAS • 1999 • 21 {4)
599
Cortese G. & Bjorklund K. R.
% CaCOa
Fig. 5. — Percent of CaC 03 through the section.
of the 49 lithologies (Table 2, Fig. 4) from
Falconara are low, 0.06 < TOC < 0.18%, throu-
ghouc the section. These low values are in good
agreemenc with Brosse & Hcrbin (1990) who
also reporced on values much lowcr than 1%
TOC in the upper Messinian of ODF
Sites 654A and 652A in the Thyrrenian Sea. The
CaCO, values (Table 2, Fig. 5) show fluctuations
between 7.92 and 50.09%.
The abundance of radiolarian specimens in the
49 studicd lithologies ranges from zéro in
Cycle 2 till more than 169000 radiolarians/g
bulk sédiment in Cycle 26 (Fig. 6), therelore
indicating ihar the diflerenr cycles display mar-
ked variations in the total abundance of radiola¬
rian specimens and in the spccies composition as
demonstrared by the changes in factor loadings,
as we will show later (Figs 15-19, Tables 6-8).
Our data show that radiolarians are usually not
présent in ihe claystones fFablc 2, Fig. 6), as also
documenled lor rhe dialoms (Gersonde 1980;
Gersoiidc &C Schrader 1984). Ol our 19 clays¬
tones, ninc were barren for polycystine radiola-
rians, while eight had low numbers, les.s than
3,000 radiolarians/g carbonate free sedimeni.
However, two claystones had .sîgnificant liigh
numbers, more than 43,000 (Sll) and about
21,500 (S18) radiolarians/g bulk sédiment.
The abundance of radiolarian skeletons is sho-
wing great changes between the different diato-
Fig. 6. — Number of radiolarians per gram bulk sédiment in the
diatomites through the section. Dashed line refers to claystones.
mites (Fig. 6). To test how the radiolarian abun¬
dance changed within a cycle and berw'een cycles,
we arbirrarily selecred rhree conrinuously sam-
pled diatomites, the lowest at r. 5 m, the middie
at c. 12 m and che uppermost at r. 18m irno the
section, respectively:
Cycle 7. (Figs 7, 10; Table 3); diatomite D7, in
rhe lowcr part of the section, Is 46,9 cm ihick
and the cbysione/diatomite boundar)' is 46.6%
into the cycle, 'l’his pcrccntagc notation has been
adopted in order lo hâve a way to directiy com¬
pare the data obtalned front different cycles, with
the assumption that the scdimentological évolu¬
tion of cach cycle is che .samc.
Cycle 21 . (Figs 8. 11; Table 4): diatomite D21,
in the middie of the .section, is 64 cm thick and
the claystone/diatomite boimdary is about 11%
into the cycle.
Cycle 28 . (Ftgs 9, 12; ‘Fable 5): diatomite D28,
in the uppei pari of the section, is 49.7 cm thick
and che claystonc/diacomirc boimdary is about
49.2% into the cycle.
In dre three cercles chosen in this experiment, the
abundance of radiolarians varie.s between
c. 3,200 in Cycle 28 and c. 117,000 radiola¬
rians/g bulk sédiment in Cycle 7. Wc hâve no
calcium carbonate data for the continuous sam-
pled diatomites but che variation patterns of the
radiolarian abundance number within the three
cycles are however distinct (Figs 7-9).
600
GEODIVERSITAS • 1999 • 21 (4)
Radiolarians from the cyclic Messinian diatomites of Sicily
Fig. 7. — Number of radiolarians per gram bulk sédiment
through Cycle 7. The dashed horizontal line marks the transition
between claystone and diatomite.
In the following wc will discuss only the diaro-
niitcs from chc chrec selected cycles.
Cycle 7. Radiolarians are présent wirh highesr
abundances (Fig. 7) in the lower 10% of the
diatomite (t*. 117,000 radiolarians/g bulk sédi¬
ment), while the number gradually dccreases
towards the top of the diatomite (c. 27,200), As
can be seen from ihe .Spumellaria/Nassellaria
(S/N) ratio, spumellarians arc dominating over
nasscllariajis in the botcom five samples (with
one exception), while in the rest of the diatomite
the S/N ratio fluctuâtes around a value of 0.7,
indicating a dominance of nassellarians (Fig. 10).
Cycle 21. Radiolarians are présent with highest
abundances in the lower 10% of the diatomite
(r. 1 14,000 radiolarian.s/g bulk sédiment). This
number rapidly dccreases to f. 40,000 c, 20%
into die diatomite, thercafrer it fluctuate.s from
between c. 24,000 and 49,000 towards rhe top
(Fig, 8). In rhe lower 15% of the diatomite (with
the exception of the oldest sample), die S/N ratio
is higher than oiic. while for the remaining part
of the diatomite nassellarians are the dominant
group (Fig. 11).
Cycle 28. Radiolarians are présent with highest
abundances in the lower 10% of the diatomite
{c. 55,000 radiolarians/g bulk .sédiment). 'l'his
number rapidly dccreases to less than 10,000
c. 15% into the diatomite, thereafter it remains
Fig. 8. — Number of radiolarians per gram bulk sédiment
through Cycle 21. The dashed horizontal line marks the transi¬
tion between claystone and diatomite.
almost constant (Fig. 9). In this diatomite the
spumellarians are dominant throughout, in
contrast to the previous cwo cycles, where nassel¬
larians are rhe dominant group. In the topmost
20% of the diatomire the S/N ratio flucruates
benveen 10 and 65 (Fig. 12).
In order to take ihe dilution effect of carbonate
into considération we plottcd the number of
radiolarians/g carbonate free sédiment of the
central sample from ail lithologies (Fig. 13). We
hâve sampied 19 out of 4l claystoncs and only
two hâve a significant radiolarian content, bet¬
ween 30,000 and 50,000 radiolarians/g carbon¬
ate free sédiment, wliilc two diatomites bave
values rcachiug more than 250,000 radiola¬
rians/g carbonate free sédiment.
The di.stürting clfect of the (most likely chan-
ging) sédimentation rate through the section was
then considered, and we calculated a radiolarian
flux curve for the .section (Fig. 14), accepting the
diatomites and claystoncs to bc prcccssion
controlled, with an average duration of
21.000 years. This curve depicts the changes of
the number of radiolarian.s per time- and per sur-
facc-unic (e.g., number of radiolarians/
kyear/cm'), thus being an image of the changes
in radiolarian productivity through rime, which
is independent both from the composition and
GEODIVERSITAS • 1999 • 21 (4)
601
Cortese G. & Bjorkiund K. R.
Fig. 9. — Number of radiolanans per gram bulk sédiment
through Cycle 28. The dashed horizontal line marks the transi*
tion between claystone and diatomite.
from thc accumulation rate of the sédiment hos-
ting thc microfossils. h is apparent that only onc
diatomiie (D26) represenrs one major high pro¬
duction puise wiih an outsianding radiolarian
flux (304,000 radiolarian skeletons/kyear/cm^)
when compared to thc rest of the diatomiies
(Fig. 14;; Table 2). This abundance peak is a
potential evenr to be used as a key-Ievel in local
and régional corrélation.
The application of Q-mode facror analysis to a
total of 4l morphorypei rcsultcd in 10 factors
(polycystine radiolarian associations), cxplaining a
cumulative variance of 95.89?4> (data hom chis
run are nor presented herein). The 13 morpho¬
types having a varimax factor component value
higher than 2.000 (i.e. the most "iniporranr" spe-
cies for each factor) in rhis run were then used
once again in a second factor analysis run. The
results between the ttvo runs are not significantly
different, thereforc enabling us to work with only
13 radier than the 68 morphotypes that we staned
out with. This réduction in species will speed up
the couriting time, and rhis rechnit|ue can, there-
fore be a poicncially usefui tool for corrélation.
The screening (the first iactor run) and reducrion
to only thc 13 most important morphotypes wÜI
make it casier to compare and use data from orher
authors. Of the factor component peaks resuldng
from this run we tabulated In Fable 8, 46 factor
component values higher than 0.400 (Table 6).
Fig. 10. — S/N ratio Ihrough Cycle 7. The dashed horizontal line
marks the transition between claystone and diatomite.
Factor 1 (doininated by the S. delmontensis
group, Table 7) reaches high values in different
poruons of the section, but i.s more significant in
sédiments oldcr than 6.50 Ma (Fig. 15).
Facror 2 (dominated by Larcoidca sp.. Table 7) is
common throughout thc section bccoming more
important în sédiments vounger than 6.54 Ma
(Fig. 16).
Factor 3 (dominated by l.ithornitrn lineata^
Fable 7) Ls the only factor that gives a good oppor-
tuniry lo split the Falconara Section in a higher
and lower portion, a.s high v;ilues for this Iactor
are only found in thc lower portion of thc sect ion,
in sedimems older than 6.60 Ma (Fig. 17).
bacior 4 (dominated by Didymocyrtis Fig. 18;
i'able 7) is one facror assigned to thc claystones,
peaking in Si3 and SI6. On the quantitative
slidc of sample SI6 no radioiarians were found
(Table 2), however, on the cnriched fauna slides
an almosr monospecific Didynmyrtis sp. assem¬
blage occiirred.
Factor 7 (dominated \yY Anthocynidium ehrenbet’
gu Fig. 19; Table 7) is the second factor a.ssigned
CO the claystones with one peak in S21.
DISCUSSION
The Falconara Section is peculiar in its radiola¬
rian assemblage and species morphology. These
602
GEODIVERSITAS • 1999 • 21 (4)
Radiolarians from the cycÜc Messinian diatomites of Sicily
Fig. 11. — S/N ratio through Cycle 21. The dashed horizontal
line marks the transition between claystone and diatomite.
deposits are immediately prc-dating the isolation
and desiccation of the Mediterranean Sea, cau-
sing “stressed** ecological conditions for the
plankton. The following scénarios hâve been
used to explain the cyclic diaromiie formation,
eA'ents thar can aiso cause ihese strcssed ecologi-
cal condition.s: (l) the intensification of Atlantic
infiow due lo glacio-eustatic sea-lcvel changes
(Van der Zwan èc Gudjonsson ( I986); (2) pcrio-
tiic upwellings (Gersoiide 1980); (3) surface
water warming (Broquet et al. 1981); (4) increa-
sed continental run-otf (Meuleiikamp et al.
1979); (5) global sea level risc in combination
with enkanccd upwelling (McKenzie et al.
1979); (6) pLilsating tcctonics (Pedlcy & Grasso
1993). Hilgcn Krijgsoian (1999) point out
that the Miocene sapropcls had the same origin
as the Plioccnc-Plcistocene ones, namely domi-
nantly precession controlled ‘‘dry-wet’^ oscilla¬
tions in the circum-Medicerranean cUmare.
These alternations certainly cau.sed différences
in the living conditions for the marine micro-
plankton.
The âge of the Tripoli Formation exposed in the
Falconara Section was determined by Hilgen &
Krijgsman (1999) to range from 6.847 to
5.980 Ma, siâning with Tripoli Cycle T8, com¬
pare Sprovicri et al. (1996) giving the range of
6.93 to 6.08 Ma, corresponding to the nannofos-
sil C. leptoporus zone. The standard radiolarian
Fig. 12. — S/N ratio through Cycle 28. The dashed horizontal
line marks the transition between claystone and diatomite.
zonation cannot directiy be applied to the
Mediterranean Sea, nor to the Messinian sili-
ceous deposits on Sicily.
l'he base oi the radiolarian Stichocorys peregrinu
zone is defined as the transition from S. delmon^
ternis lo S. porgmut. dated to occur ac c. 6.2-
6.3 Ma (Theycr & Hammond 1974). l^icdel et.
al. (1974) reported on one radiolarian-rich
sampic in rhe Trubi maris of the Capo Rossello,
assigned to the Zanclean stage, lower Pliocène,
stating: “...the “Trubr assemblage is to be placed
between the rime of evolutionar)'' transition Iroin
S. delmontemis to 5. peregrtnay and that from
Spongaster berminghami to S. peaias, and thus
evideiuly bclongs to the Stiihocorys peregnna
zone.” From the same profile Riedel ÔC
Sanfilippo (1978) also report on conimon typical
üceanic specintens uf S. peregriaa with truncated-
conical tliird segment.
In the Falconara Section, assigned to the older
Tripoli Formation, wc hâve not been able to
observe this transition. We include in the S. del-
?«/?//re/WW groiip several morphologies, somc with
a rhkk silicified test, oihers with a very thin test,
and scvcral forms having irregularly shaped seg¬
ments with tilted strïctures between segments.
No real specimens of the oceamc form of S. pe-
regrina have been observed in our material. We
cherefore assign the section to predate the
Stichocorys peregrina zone.
GEODIVERSITAS • 1999 • 21 (4)
603
Corcese G. & Bjorklund K. R.
Fig. 13. — Number of radiolarians per gram CaCOg-free in the
diatomites through the section. Dashed line refers to claystones.
Foraminiferal assemblages arc generally présent
in the diatomites with a rich and divcrsified
fauna, whtlc the diver.siry is generally lower in the
claystones. Insome ebystone units the foramini¬
feral as.sembJages are mlssing, e.g., M3Ü, M4l,
and M42 (Sprovîeri er al. 1996). They sugge.si
that the clay.siones are deposited during cold per-
iods while the diatomites are deposited during
warm periods, as they generally hâve a warmer
planktonic foraminifer assemblage.
Muller (1985) on the other haiid concludes the
opposite- The claystones hâve a higher amount
of nannoplankton and a more diversifîed assem¬
blage with input of warm water species (i.e.
Sphenolitlms abies) and sonie discoasters. She the-
refore concluded thaï the claystones were deposi-
red during warm periods, while the diatomites
were formed during cold periods and rimes with
upwelling related lo changes in the prevailing
wind direction.
The Sîicochorys delmontemn group îs présent
throughout the section and varies greatly in
abundance as well as morphology, as also obser-
ved in the Gibliscemi Section (Caulet pers.
comm. 1997). The variation in rhe skeletal nior-
pholog)’ jn chc S. delmonf^ensis group is a poten-
tial tool in interprecing the paleoclimate if wc
can décode the meaning of thèse variations.
The S. delmontensis association (Factor 1, Fig. 15)
and Lithomitra lineata association (Factor 3,
Fig. 14. — Radiolarian flux (number of radiolarians/kyear/cm^)
through the section. Dashed line refers to claystones.
Fig. 17) show aimost the sanie pattern of major
and rapid variations in rhe lower part of the sec¬
tion. oldcr rhan 6.5 Ma, inrerpreted a.s rapid eco-
logical changes over very short time intervals.
In Factor 2 Larcoidea sp., Porodiscus sp., and
SpongotroL'ht4:i glacialis arc the dominant taxa,
after 6.5 Ma and modem équivalents of rliese
categories arc often found in deeper and coder
water, excepi for Stylochlamldtum venusium
(forms that we included in the Porodiscus sp.)
showing a .shallow and warm waicr affinity in the
Pacific (Mullineaux & Westbcrg-Smith 1986).
As the modem équivalents of chese groups do
refer to open océan conditions, it Ls not easy to
inrerprei the Falconara vScciion in a scénario
where die shallow Caluiiisscaa basin has a res-
rricted comniunicaiion with the océan.
Diatoras are generally absent or badly preserved
in the claystones (Gersonde 1980; Gersondc &
Schrader 1984). Siniilarly for the radiidarians,
but two claystones bave significant aniounts of
radiolarians, SIS (21^500 radiolariaas/g hulk
sédiment) and Sll (43,000 ladiolarians/g bulk
sédiment). In addition rhree claystones arc clia-
racccnstic by their fauna associations, Si3 and
Si6 (by Factor 4, dominaicd by Didynwcyrtis sp.)
and S21 (by Factor 7, dominaced by
Anihocynid'mm ehmibergii). These fivc levels are
potential good local or régional markers within
the Caltanissetta basin.
604
GEODIVERSITAS • 1999 • 21 (4)
Radiolarians from the cydic Messinian diatomites of Sicily
Factor 1
Fig. 15. — Factor components through the section (Factor 1 ).
The Didymocyrtis sp. is almost monospecific and
as the section is predating the Stkhocnyys peregri-
na zone, the Didymocyrtis periultima zone would
seem natural, but wc cannoi assign our assembla¬
ge to this zone vvith certainty. l'his form ol
Didymocyrtis sp. might bc tlie occanic counter-
part oi Didymocyrtis penultima, howcA^er, it dd-
fers so much that it probably i.s a new species.
We do not think thaï rhis morphology is simply
a resulr of different ecolog)^ and corresponding
ontogenesis.
The diatomites show great variation in the num-
ber of radiolarians/g sédiment, both berween rhe
diflercnl diatomites and within them (Figs 6-9).
‘Ib test the hypochesis if thcrc is a fhythmic deve¬
lopment tliroagh lime between the different
diatomites, we assigned each sample tu its lime
équivalent position widiin each cycle, assuming a
claystonc and a diaiomite couplet to represent
21,000 years. Each claystonc and diacomice has
its own polycy^siine radiolarian ‘Tingerprint"
(assemblage or event) as deiermincd by the per¬
cent distance inre the cycle, l'his will provide an
excellent stratigraphie tool wiih a high and préci¬
sé time résolution (Table 8).
Another “fingerprint” that can help to recognise
the different diatomites is the Spumellaria/
Nassellaria (S/N) ratio. D7 and D21 show a very
similar and systcmatic évolution in this ratio,
where spumellarians dominate the lower part of
Factor 2
Fig. 16. — Factor components through the section (Factor 2).
the cycle, while the nassellarians take over in the
upper part of these cycles (Figs 10-11). D28
shows a dirterent trend in ihe Spumellaria/
Nassellaria ratio .since ihc spumellarians are
aiways dominant and rhey bccome much more
so in rhe upper part of the cycle (Fig. 12).
The différences in rhe polycystinc radiolarian
“fingerpfint” berNveen cycles can not be explained
at présent, but only speculated upon. The mlcro-
fauna of the l'iipoU Formation, both at
Capodarso (Suc et al. 1995) and at Falcon.ira
(Sprovicri et al. 1996) is rich in planktonic fbra-
minifcr,-î, a typical oceanic imprint. The sédi¬
mentation histojy of the Calt.inissett.a basin has
chaiigcd rhrough the Messinian. as documented
by the alternation of diatomites and claysrones
due to processes causing tlie isolation, changes ni
production and préservation of organic material,
changes in ptimary and sccondary production,
and desieçation of the basin, compare the scéna¬
rios outlinod elsewhere. Suc et al. (1995) point
ouc that the diatomitc-claysrone couplets are a
rcsult of sea-level fluctuations. Sprovieri et al.
(1996) on the other hand concluded that the
rhythmites are asironomically forced due to che
21,000 yrs periodicity based on the occurrence
of planktonic foraminifers, as also siipported by
Flilgen et al. (1995) and Hilgen & Krijgsman
(1999).
Whatever causes the rhythmites, the presence or
GEODIVERSITAS • 1999 • 21 (4)
605
Cortese G. & Bjorkiund K. R.
Factor 3
Fig. 17. — Factor components through the section (Factor 3).
absence of polycystine radiolarians is a resuit of
changes in the ecological, as well as in the preser-
vational conditions within the Caltanissetta
Basin. Suc et al. (1995) concluded that the
Contrada Gaspa Scaion, constiaited by 108 m
oi sédiments ranging front diatoniitcs to claycy
diatomites, was a rcsult of déposition in a sinall
basin intermittently isolatcd Irom the
Caltanissetta Basin. The Falconara Section, near
to the rim of the Caltanissetta Basin, has a diffe¬
rent lithological structure than the Capodarso
Section, therefote muking corrélations diftlcult.
This makes the Caltanissetta basin an analogue
to modem Nonvegian fjords. Polycystine radiola¬
rians hâve heen shown (Swanberg Bjorklund
1986, 1987) to live and thrive in very landlocked
environments such as l7ords and poils, wherc
they occur in the plankion in concentrations of
c. 10000 radiolarians/m^ scawàtcr. In one poil
the assemblage is almost rnonospccific (Aniphi-
melissa setosa) shuwing a different skeletal nior-
phology than the occanic counterpart period
Bjorklund & Swanberg (1987) suggested tliat in
the warm end of its température range, m the
fjords, the availability of nutrition gave a much
higher grtnvch rate that resulred in smaller and
reticulated forms. while ihe oceanic fornis, in the
cold end of its température range, grew slower
and over a longer rime period, resulting in a lar-
ger and more siHcified skeleton with rounded
Factor 4
Fig. 18. — Factor components through the section (Factor 4).
pores. An analogue is the S. delmontensis in the
Caltanissetta Basin which shows a big variation
in its morpholog)', where we Identified and coun-
ted tour different morphotypes. It is apparent
that in certain parts of the .section, and even in
certain parts within the single diatomites, the
different morphologies of 5. dehnofitensis must be
a response to ecological changes. The ‘'dry-weC
oscillations in the Mediterranean climate and the
enhaneed coniinental run-off (Meulenkanip et
al. 1979) must certainly be kepi in mind.
The high iieritic plankton values are in conflict
with the general undetstanding that radiolarians
are noi abundant in the ncriiic environments. In
the fjord sédiments 1,000 polycystine radiola-
rians/g is a normal value, as the terrigenous input
due to river discharge is high and the microfossil
remains arc very nluch diluted.
The Caltanissetta Basin, if compared with a fjord
situation, must bc of a different magnitude and
structure. Icrrigenous sédiments must bc trap-
ped m near Und “sub-basins" with the possibility
to producc, accumulate and préservé biogenic
sédiments rich in both carbonate and opal
microfossil remains, probably the Caltanissetta
ba-sin was more open than the analogue fiords,
High levels of organic maierial and opal micro-
fossils arc, howcvci, deposited in present day
anoxie basins such as in the Tyro Basin in the
eastern Mediterranean (Bjorklund & de Ruiter
606
GEODIVERSITAS • 1999 • 21 (4)
Radiolarians from the cyclic Messinian diatomites of Sicily
Factor 7
Fig. 19. — Factor components through the section (Factor 7).
1987) in contrasr to the oxygenated sédiments in
the Mediterranean proper (Caulet 1974) which
are poor in opal microlossils.
The Spurnellaria/Nassellaria ratio lias becn used
as a poceniial lool to discriminace bctwccn
assemblages in ncritic environments (Palmer
1986) whcre spumellarians predominare rhe
plankton, tfs opcn oceanic environments where
nassellarians tend to be rhe dominant group
(McMillan 1979, 1981). Swanbcrg &c Bjorklund
(1987) clearly dcmonsirared chat rhe radiolarian
fauna of Sogndalsfiorden was dominated by early
developmencal stages oï Amphinielissa sp. whtch
compriscd 11%, 39% and 60% of rhe plankton
fauna proceeding from ihc outer to the inner
fjord basin. In nvo orher landlocked basins the
same species made up 91 and 99% of rhe fauna,
This clearly demonstraie.s rbe occuramte of tias-
sellarians with more than 99% in the ncritic
plankton, in opposition to vhe conclusions by
Palmer (1986) and McMillan (1979, 1981), and
does not signal open océan conditions.
If our detailed investigation of ihc S/N ratio in
rhe three different cycles (J'igs 10-12) should bc
interpreted as dcpiciing ncritic and oceanic
conditions, boih D7 and D21 woiild then show
a graduai évolution from nericic to oceanic
conditions as ihey are dominated by spumella-
rians close to the base ol the diatomites, whüe
nassellarians arc increasing towards the top. The
S/N ratio in D28 suggests on the contrary that
this cycle was exclusively depostted in a neritic
environment. We cannot see any direct connec¬
tion beeween the S/N ratio and the neritic vs
oceanic environments (distance from shore), as
interpreted by Palmer (1986), The change in the
S/N ratio is more subject to local ccological
changes within the basin, and noi so much a
resuh of the sites position in relation to the coast
or the open oceanic. Boltovskoy (pers, comm.
1997) also observed that che S/N ratio behaves
incoiisistently on different sédiment types.
Our conclusion i.s therefore that che .S/N ratio in
the .scdiment cannot bc used to discriminatc bet-
ween neritic nt oceanic conditions, mostly as this
ratio is very sensitive to di.ssohition, a common
problem in the hemipelagic province. Locally,
however, (hc S/N ratio can bc a iisefui stratigra¬
phie tool to rccognisc polycystine distribution
patterns, both within and bciwccti cycles in a
section, as wcll as between sections. This bccause
the S/N ratio in thi.s .scénario probably dcpicts
changes and différences in the ccology and in the
production, as well as in the accumulation and
préservation conditions of microlossils.
The diatomites are generally very rich in radiola¬
rians and we tend to condude thaï nuiricnt avai-
lahiliry in lhe basin du ring their formation is
good, probably as a resuit of continental run olf
(Meulenkamp et tfl. 1979). The almosi total lack
of pLmktonic lîfe in the claystone lithologies tn
rhe Capodarso Section (Suc n/il. 1995) indicates
that the absence of siliccous niicrofossils is not
only a resiilr of silica dissolution. Also planktonic
foraminifers are absent or rare, while the benthic
foraminifer fauna is restricted (Suc e/ ai 1995),
indicaiing that an envi ion mental stress is affec-
ting lhe basin. The micro lamination do indicate
periodic anoxie conditions.
Panicularly high values of the factor component
peaks for che final nine factors (higher than
0.400» framed in Table 6) werc used to trace the
most impartant “radiolarian factor peaks'’ throu-
ghout lhe section. The pcalcs (Table 8) are coded
as X.Y, where X represenrs the factor number
and Y represencs a reference nunrber for the “fac¬
tor peaks”> arranged in an ascending order from
base to top of the section.
Some factors (Table 8, e.g., Factor 1) display “16
GEODIVERSITAS • 1999 • 21 (4)
607
Cortese G. & Bjorklund K. R.
factor peaks" (framed values in Fable 6) in diffe¬
rent portions of the section (e.g., from diato-
mites D4 to D34), which bave to be interpreted
as the récurrence of équivalent ecological or
hydrograpliical conditions at dilferent times.
The peak pattern ns presented in Table 8, is our
First atrempt to makc a radiolarian stratigraphie
synthesis of chc FaJconara Section bascd on “fac¬
tor peaks’\ and rhe peak order obviously repre-
sent an évolution ot the radiolarian assemblage as
a response ro changiug eavi'ronments. To use the
peaks as a corrélation tool betvveen our référencé
section (Falconara) and anolher section we hâve
to pick a sequence ot factor peaks from the sec¬
tion we wanr to correlate and look for the samc
peak partern in the référence section. We see chis
technique to be especially useful when corrcla-
ting profiles in the same section where visual cor¬
rélation is difFicult due to tectonism.
CONCLUSIONS
1. In diatomites the number of radiolarians/g bulk
sédiment fluctuâtes between 1,200 (D35) and
169.500 (D26). One diatomite (02) is barren.
2. On a CaCO^ free basas, D26 has a flux of
303.500 radiolarian skclctons/kyear/cm^. A pos¬
sible régional marker for corrélation.
3. In D7 and D2i spiimellarians are dominant
in the lower 10-15% of the diatomites, while
nassellarians dominate the upper parc.
4. In D28 spumellarians dominate the whole
diaromice.
5. The S/N ratio rcflects local ecological changes
(as shown in D28).
6. In claysrones rhe number of radiolaria/g bulk
sedimenr is generally barren or low. Two clay-
stones, Si 8 and Sll, hâve high numbers of
21.500 and 43,000, respectively, and may serve
as a corrélation rool.
7- Sl3 and Sl6 hâve factor component peaks of
0.997 and 0.997 respectively, two claystones thaï
may serve as a régional marker, dominated by an
almost inonospecitic Didynwiyrils sp. (not
Didymoçyrùs peuuliima) itssemblage.
8. S21 bas a factor cOmponent peak of 0.993,
Anthocyrtidium ehrenbergii is the important spe-
cies, and may be a stratigraphical marker.
Acknowledgements
We arc thankful to Dr. J. P. Caulet who reviewed
and made comments that greatly improved the
manuscript.
Dr. G. Cortese would like to thank the following
institutions for the économie support during the
rcaii-sacion of chc manuscript: the PaJcontological
Muséum (University of Oslo), the Norwegian
Research Council (KAS fcilow.ship) and the
Norwegian Acadeiny oi Sciences ihrough the
program "'Nansenfondei og de Dcrmed foibund-
ne fond^\
Prof. K. R. Bjorkiund would acknowlcdge the
support and inspiration provîded by Dr. M.
Marcucci, Dipartimento Scienze délia Terra,
Florence, Iraly. Wc are thankful ro Dr. H. A.
Nakrem for the support and facilitics provided
by the Paleontological Muséum, and for his ins-
pirarion and practical help during tins work.
Tins is the Coiurihuiion number 415 from the
Paleontological Muséum, University of Oslo.
REFERENCES
Beaufort L. & Aubry M. P. 1990. — Fluctuations in
rhe composition of lare Miocene calcareou.s nanno-
füssil assemblages as a response to orbital forcing.
PtiieûcetvioxTitphy 5(6): 845-865.
Bjorklund R. R. i9"6. — Radiolaria from the
Nui-wegian Sc.'i. I.cg 38 ot the Deep Sea Drilling
Project: [lOI-l 168. in Taiwani M., Udinrsev G.
(eds). hüi/td Pt-'/forts of tht Deep Sea Drilling Project
3S. U.S. Gavetnmencal Printing Office,
Washington D.C.
Bjorklund K. R. & .Swanherg N. R. 1987. — The dis¬
tribution of two morpliutypes ot the radiolarian
Amphimelmd yctosd CIcvc (Nasscllarida): A rcsult of
cuvironrnental variabllity ? Sdmia 72: 245-254.
Bjorklund K. R. Si de Ruiter R. 1987. — Radiolarian
préservation in estern Meditertancan anoxie sédi¬
ments. Marine Geotogy "^5: 271-281.
Broquei P., Mascle G &i Monnicr M, 1981. — La
formation à tripolis du bassin de Caltanissetta
(Sicile). Revoe de géologie dynamique et géographie
phytiqurl"} : 87-98.
Bro.ssc F-. ik Hcrbin J. P. 1990. — Organic gcoche-
niistt)^ of ODP Leg 107 sédiments (Sites 652, 653,
654, 655). in Kastens K. A,. Mascle J. et al. (eds),
Proceedings of rhe Oivau Drilling Projeeu Sciemific
AV>/y/n lOT 537-544.
Butler R. W. Fl.. Lickonsh W. H., Gra.sso M., Pedley
H. M. & Rambcrti L. 1995. — Tcctonics and
sequence stratigraphy in Messinian basins, Sicily:
608
GEODIVERSITAS • 1999 • 21 (4)
Radiolarians from the q^ciic Messinian diatomites of Sicily
Constraints on the initiation and termination of
tiie Mcdnerranean vdliniry crisis. Geolo^ical Sodety
of America, Btdletins 107: '125-439.
Cande S. C. tk. Kent D. V. 1992. — A new geoma-
gnetic polarity timéi>cale for the late Cretviçeous and
Cenazoîc. Inurnol of Ceophysical Research 97:
13917-13951.
— 1995. — Revised agc calibration points for the
geomagneiic polaruy lime scalc. Geophysical
Research f.euef'S 22: 957-960.
Caralano R. & Sprovieri R. 1971. — Biostratigrafia di
alcune sérié saheliane (Pvlessiniano inferore) in
Sicilia: 211-249, />/ Farinued A. (ed.). Proceediags
ofthe U PLniktonic Conférence, Ronia J 970.
Caulet J.-P. 1974. — l es radiolaires dos boucs super¬
ficielles de la jMédirerrauée. Bullerin du Muséum
national d Histoire natweüc^ série 3. n° 249, juillct-
aoûi 1974, Sciences de la Terre 39 : 217-288.
Cücco L. 1905. — I Radiolari fossili del rripoli di
Condro' (Sicilia). in Revdironti c Memorie délia
Regia Acendemia di Scieme, Lettere ed Arti degli
Zeuvîti (Acireale), Sérié 3, Vol. 111. Memorie délia
Classe di Scienze: 1-14.
Col.îlongo M. L... Di Grande A.. D'Onofrio S..
Giannelli 1... laccarino S., Mazzei R., Romeo M. k
Salvatorini Cî. 1979. — Stratigiaphy of Lace
Miocene iralian sections struddling the Lortonian/
Messinian bouiidary, BoUettino délia Sodeta'
Paleontologica ftaliana 18: 258-302.
D'Onofrio S., Giannelli L., laccarino S., Mi>riotti E-,
Romeo M., Salvatorini F., Sampô M. & Sprovieri
R. 1975. — Idanktonic foraminifera of ihc Upper
Miocene front some Iralian sections and the pro-
blent uf the lower boundary of the Messinian.
BoUettino délia Societa' Paleontologica Italiana 14:
177-196.
Dumitrica P. 1973. — Crctaceous and Quuternary
Radiolaria in deep sea sédiments froin itic nonlv
west Atlantic Océan and Mediterraneaii Sea. Initial
Reports of the Deep Sea Drilling Project, U.S.
GovernmenrPrinting Office 13 12); 829-901.
Ehrenberg C. G. 1854. — Mikrogeologie. XXVIII +
374 p., Atlas 31 p., 40 pis.. Fori}>etzung (1856),
88 p. + 1 p. [erratal. Voss, Leipzig.
Gautier F. 1994. — Calihration magnetostratigra-
phiejue du Messiniet) de la Mediterranée occidentale.
Age, durée et dérouiement de la crise de salinité.
Doctorat thesis, Université Montpellier 11, Science
et Techniques du Languedoc. 152 p.
Gautier F., Clauzon G.. Suc J. P.. Ctavatce J. Sd
Viulanti D. 1994. — Age et durée de la crise de
salinité messinienne. Cotnptes Rendu de PAcademie
des Sciences. Paris 318 : 1103-1109.
Gersonde R. 1980. — Pafâookologischc md Biostiati'
graphische Auswenuvg von Diaiorneen Asioziation
aus dem Aîessinium ans déni Caltaniseîta-Beckens
(Sizilien) and einiger Vergleichs-Proftle in SO-
Spanieriy N9C Algérien und auf Kreta. Thesis,
Universitat Kiel, 393 p.
Gersonde R. ôd Schnider H. 1984. — Marine plank-
fic diaioni corrélation of Lower Mes.sinian deposits
in the western Meditetranean. Marine Micro-
paleontology 9: 93-110.
Goll R. M. & BjorlJaad K. R. 1974. — Radiolaria in
surface sédiments o( the South Atlantic.
Micropaleimtology 20(1 ): 38-75.
Hilgen F, 199L ■— Extension of the asironomically
calibrated (polarity) rime scalc lo rhe Miocene/
Pliocène boundary. Eanh and Pianetary Science
le/rm 107: 349-368.
Hilgen F. & Krijgsman W. 1999 — Cyclostrati-
graphy and astrocfironology of rhe TnpoJi diatomiie
Formation (pre-evaporire Messinian. Sicily, Italy).
Terra Nota 11: 16-22.
Hilgen F.. Ktiigsman W., Langereis C. G., Lourens
L. J-, Satitarclli A. & Zachariasse W. J. 1995. —
Exiending ihe ascronomical (polarirv) tîme scale
intü rhe Miocene. Earth and Pianetary Science
Letrers 136: 495-510.
Hodell D. A., Benson R. H., Kent D. V., Boer.snva A.
& Rakic-EI Bied K. 1994. — Magnero.srrati-
graphic, biostratigtaphic, and stable isotope strati-
graphy of an Upper Miocene drill corc from ihe
Sale Briqueterie (norlhwe.sicrn Morocco): a high-
resoiution chronology for the Messinian stage.
Paieoiranogiaphy 9(6): 835-855.
Hollande A. & Enjumet M. I960. — Cytologie, Évo¬
lution et Systématique de^ Sphacroïdés
(Radiolaire.s). Archives du Muséum national
d'iiistoiir naturelle. Série 7. Vil : 1-134.
Flsü K. J. 1985. — Unrcsolvcd problem coiiccrning
the Mes.sinian salinity cri.si.s. Giornale di Geologia
47:203-212.
Imbric J. & Kipp N. G. 1971. — A new micropa-
leontological meihod for quantitative paleodimato-
iogy: application to a late Pleistocene Caribbean
cote: ^1-147. in Turekian K. K. (ed.), The late
Ccnoznic glacial âges. Yale University Pres.s, New
Haven-London.
Jorgensen IL. 1905. — The prorist plankton and the
diatorns in bonorn s.unples, in Nordgnard O. (ed.),
Hydrographical and biological investigations in
Nor\\Tgian fjords, Bergens Muséums Skrifter 1 (7);
49-15L
Klovan J. E. N (mbrie J. 1971 - — An algorithin and
F(3RTRAN'1V program for largC'.scale Q-mode
factor analysis and calculation of factor scores.
Journal of the Indian Society of Soil Science 3(1):
61-77.
Krijgsman W., Hilgen F. J., Negri A., Wijhrans J. R.
Sc Zachariasse W. J. 1997. — The Monte del
Casino section (northern Apennines, Italy): A
potemial Tononian/Messinian boundary stratoty-
pe? Palacogeography, Palaeoclimatology, Palaeo-
ecology 133; llAls
Langereis C. G. & Dekker M. ]. 1992. —
Palconiagnctism and rock magnetism of the
Tortonian-Messinian boundary stratotype at
GEODIVERSITAS • 1999 • 21 (4)
609
Cortese G. & Bj 0 rklund K. R.
Falcoiura, SicÜy. Physks of the Eimh ami Plartetary
Interiors 71:1 ÜÛ-111.
Langercris C. G.» Zachatiasbtr W. ). & Zijderveld
J. D. A. 1984. — Late Kfioccne niagnctostratigra-
phy of Oere. Matint Micropaleoncolo^ 8; 261-281.
McClelland E., fintgan B. Bucîer R. W. H.
1996. — A magnctostraiigraphic siudy of ihc onsci
ol the Medirerranean Mcssinjan salinicy crisis;
Caltanksttra Sicily* iu Palaconiagnctism and
Tectonics of the Mediterranean région, Genlogical
Societ\> Spécial Publication 105; 205-217-
McMillan K. J. 1979. — Radiolarian ratios and the
Plcistocene-Hülnccne bcmndary. Trunsaciiom. Ciulf
Coast A^sotidtioti of Cre^lwicalSorieiks 29i 298-301.
— 1981. — Radiolarians nom rhe souihern Mexico
active margin: 643'652. lu Waikins J. S., Moore
J. C. Cf al. (eds). hutial Repom of the Deep Sea
Driliing Projecr. U.S. Govemmental Priming
Office, Washington D.C.
Meulenkamp J. E.. Dricvcr B. W. M., Jonkers H. A.,
Spaak P., Zachariassc W. |. & van der Zwaan G. J.
1979. — [,ate Miocene-PIiocvnc cHinatic tluctua-
tions and marine cyclic sedinieniaiion patterns.
Annales Géologiques du Pays Hellénique II :
831-842.
Mortura S. 1871. — Sulla formazione terziaria nella
zona solfifcra délia Sicilia, in Metnotk per sennre
alla Caria Geologicii d'Italia del Comuato Gcolngico-
Vol. 1. 1 irrn/.e.
Mullineaux !.. S. & We.sihcrg-Sniiih W. J. 1986. —
Radiolarlans as pulcoccanographic Indlcators in the
Miocene Monterey l ormarion» Llppcr Ncwport
Bay, California. Mkropaleonfology 32 (1); 48-71.
Müller C. 1985. — I.tirc Miocène lo Recciu
Mediterranean bio^tratigraphy and paJeoenviron-
ments basée! on calcareous nannopbnkton: 4^1-485,
in Stanley D. J. & Wezd h. (3. (cd.\), Geologkal évo¬
lution oj the Medncrrattean Basin. Springer-Verlag,
New York. Berlin, Heidelberg and lokyo.
Nigrini C. Al Lond>ari G. 1984. — Guide to Miocene
Radiolaria. Spécial Ptthl/eadon Cushnian Found¬
ation for foraminilvral Hcsrarch No. 22. 422 p.
Nigrini C. & Moore F. C. J. 1979. — Guide lo
Modem Radiolaria. Spécial Publication Cus/nnan
Foundatioft fof loftpnffnfralRatart 16, 342 p.
Nicotra F. 1882. — Diaromeae in .schiscis cjuibusdam
messanensibus detcctae. Bollettino Societa Geologica
Italiana 1: 1-45.
Palmer A. A. 1986. — Cenozoie radiolari.ins as indi-
carors of ncrific versus occanic conditions in conti-
nental'tnargin depostts: U.S. Mtd-Ailaniic C'oastal
Plain./VWl: 122-132.
Pedley H. M. & Grasso M. 1993. — ConiroR on
fauna and sedimenr cycliciry within ihe Tripoli and
Calcare di Base b.^.sins (late Miocene) of central
Sicily, Palacogeogmphy Palaeoclinhitology Palaeo-
ecolo^ 105: 337-360.
Petrushevska)^ M. G. 1971. — Radiolyarii Nassel-
laria v planktone mirovogo okeana in Bykhovshii
B. E. (ed.), Radiolyarii Mirovogo Okeana po niaie-
rialam Sovetskikh Ekspcditisii. Issled. Fauny Morei-,
Nauka, Leningrad 9: 3-294 [in Rus.sian].
— 1981. — Radiukiria of the order Nasscllaria of the
World Occan, in Naumov D V. {cd ), Oesniption
of the fauna of the USSP^ Zoologiçal Insiiiute,
Atadtmy of Science. LISSR, 128: 1-406 [in
Russian].
Riedel W. R. & Sanfilippo A. 1978. — Radiolaria, in
Zachariassc W. Riedel W. R.» Sanfilippo A.,
Schmidt R. R., Borsm.a M. J., Schradci K. J.,
(jer.sondc R., Drooger M. M. & Broekman J. A.
(eds), Micropaleontological Councing Methods and
Techniques, An Exercise on an Eighr Métré
Section of the Power Pliocène {>f Capo Rosscllo,
Sicily, Utrecht Micropaleontological Bulletins
No. 17: 81-128.
Riedel W. R., Sanfilippo A. &: (7ira M. B. 1974. —
Radiolarians from rne srracot)'pe Zandçan (Power
Plioccne, Sicih')- Rivista Italiana di Palcontologia e
Straiigrafia 80 (4): 699'“34.
Riedel W. R., Westberg-Srnith M. ). 6i Budai A.
1985 — Patc Ndogene Ri^diolaria aod Mcditer-
ranean Paleoenvironmcnts: 487-523. in Stanley
D. J. & Wczrl l.-C. (eds). Geological L'.voluîion of
ibc Mediterremenn Busm. Springer Vcriag. New
York, Berlin, Heidelberg and T okyo.
Rio D., Thunell R., -Sprovicri R., Bukry H-, Di
Siefano P., Howtll M., Raffi P. Sancctia &
Sanfilippo A. 1989. —Sinitigraphy and deposirio-
nal bi.stor)'^ of che Pliocène Bianco section, Calabria,
Southern Italy. Paheogeography, Palaeoc/imurology,
Palaeoecolog}'76 (1-2): 85*105.
Sanfilippo A. 1971 — Neogenc radiolarians of tho
Mediterranean and wesrern Pacific. Proceedings of
the U Planktonic Conférence, Roma, 1970'
II21-U27.
— 1974. - Plioccne radiolaria from Bianco,
C. alabriu, luly. Mkropaleuntology (2): 159-180.
Sanfilip(Jo A., Burkle l. Fl-, Martini È. & Riedel
W. R. 1973. — Radiolarian.s, Diaroms,
Silicoflagcllates and calcareous nannofos.sils in the
Mediterranean Neogene. Micropaleontology 19 (2):
209-234.
Sauvage H. F. 1873 — Mtfmoire suf b (aune ich-
th\’t>logic|ue de la période tertiaire et plu.s spéciale¬
ment sur les poisson.s ftissile.-; d'Oran (Algérie) et
sur ceux découverts par M. R. Alby a Licata en
Sicile. Annales des Sciences Géologique, Paris 4(1):
1-272.
Schwager C. 1878. - Nota .su alcuni Foraminiferi
nuov) del fubo die stretto. Bollettino Regio t_,omi-
tato Gcologico Italiam IX: 519-531 -
Sprovieii R , Di Srefano F. &: Sprovieri M. 1996. —
High résolution chronology for Pâte Miocene
Mediterranean straiigr.tphic eAcnis. Rtvista Italiana
di Paleontologhi e Straiigrafta 102 (11; 77-104.
Stôhr E. ] 876. — Il terreiio pliocenico dei dintorni di
Girgenti. Bollettino Regio Comitato Geologico
610
GEODIVERSITAS • 1999 • 21 (4)
Radiolarians from the cyclic Messinian diatomites of Sicüy
Italiano VII ( 11 ' ] 2).
— 1878. — Sulla posizione geologica del tufo e del
rripoli nella zona solfilera di Sicilia. Bollettino Regio
Comitato Geologico Italiano 11-12; 498-518.
Suc J. P., Violanti D., Londeix L., Poumot C., Robert
C-, Clauzon G.» Gautier F., Turon J. L., Ferrier J.,
Chikhi H. Cambon G, 1995. — Evolution of
the Messinian Mediterranean environments: the
Tripoli Formation at Capodarso (Sicily, Italy), in
Verniers J., Poumot C. éc Streel M. (eds), Marine
quantitatwe palynology: tectonic, climatic and eusta-
tic contrat, [Review of Palaeobotany and Palynolog)/]
87(1): 51-79.
Swanberg N. R. & Bjorklund K. R. 1986. — The
radiolarian fauna of western Norwegian fjords:
Patterns of abondance in the plankton. Marine
Micropaleontology 11: 231-241.
— 1987. — Radiolaria in the plankton of some fjord
in western Norway: The distribution of species.
Sarsiall-. 231-244.
Theodorites S. 1984. — Calcareous nannofossil bio¬
zonation of the Miocene and révision of the hélico-
liths and discoasters. Utrechî Micropaleontological
Bulletin 32: 1-271.
Theyer F. & Flammond S. R. 1974. — Paleo-
magnetic polarity sequence and radiolarian zones,
Brunhes to polarity Epoch 20. Eanh and Planetary
Science Letters 22: 307-319.
Vai G. B. 1997. — Cyclostratigraphic estimate of the
Messinian stage duration, in Montanari A., Odin
G. S. and Coccioni R. (eds), Miocene stratigraphy:
An integrated approach, Developements in Paleon-
tology and Stratigraphy 15: 463-476.
van der Zwaan G. J. 1982. — Paleontology of Late
Miocene Mediterranean foraminifera. Utrecht
Micropaleontological Btdletin 25: 1 -201.
van der Zwaan G. J. &: Gudjonsson L. 1986. —
Middle Miocene-PIiocene stable isotope stratigra¬
phy and paleoceanography of the Mediterranean.
Marine Micropaleontology 10: 71-90.
Submitted for publication on 27 April 1998;
accepted on îî June 1999.
GEODIVERSITAS • 1999 • 21 (4)
611
Radiolarians from the cyclic Messinian diatomites of Sicily
APPENDIX
Table 1 . — The taxa which hâve been identified and counted for the statistical exercise in this study. Literature references are given
to illustrations of the most important taxa.
Taxa References for illustrations
1 Botryopyie sp.
2 Acrobotrys sp. cf. A. disolenia
3 Actinomma sp. cf. A. medianum
4 Actinonma sp.
5 Acf/nomma sp. 1
6 Ampb/rrhopalum sp.
7 Anoms/oaanr/ia dontafa
8 Anfhacyrf/dii/m ohrenbergi
9 Aracbnocoraftim^P-
10 Hymtrfidstrum ap.
11 Boiryosirobus auritus/australis
12 Carpocananum papillosum
13 Carpocanisifum sp.
14 Cenosphaera cristata?
15 Ceftùsphdûra ap. 2
16 Camtncyrfi$ sp.
17 Comiit&Iia proiunda
18 Cyriocapsolhi cyltndroides
1 9 Didymocyrtis sp
20 Euchitonia taicaîa
21 Etjcyrtidium denkowskü
22 Eucyrîidfum bexagonatum
23 Eucyrtidium sp. cl. E. holospira
24 Eucyriidtum puncfatum
25 HekoOiscus astenscus
26 HeUodlscuâ echintscus
27 He.xaœntium drachnoidale
28 Hexacontium pachydermum (big)
29 Htixacaniiüm pachydermum (small)
30 Haxaconttum sp.
31 Hexapyle sp.
32 Hymeniastrum sp.
33 Larcoidsp. 1 (spiral)
34 /.arcorc/sp. 2 (small)
35 Larcoidea sp
36 Larcopyie buetschlii
37 Larcopyh sp.
38 Larcospira quadrangula
39 Lipmaneita sp.
40 Litharachniuni sp.
41 Uthomdfsria Rp. cf. L setosa
42 Uthomitm arachnea
43 Uthûrnitru ap. Cf. L lineata
44 Lophnphaona huntschlii
45 Lophophaena ap.
46 Tetrapyle octacantha
47 PhormosUchoartus corbula
48 Phartiaium pulyciadum
49 Porndiscussp
50 Ptôfocaniumsp.
51 Spcngaster bcrminghami
52 Spongotrochus glacialis
Fig. 20A-E
Petrushevskaya (1981; fig. 495)
Nigrini & Moore (1979; pl. 3, fig. 5)
Nigrini & Moore (1979; pl. 4. fig. 4)
Fig. 21F, J; Nigrini & Lombari (1984; pl. 27, figs 1-2)
Riedel étal. (1985; pL 3, figs 13a-c)
Riedel étal. (1985; pl. 2. fig. 2a)
Fig. 21 K. N; Riedd et ai (1985; pl. 5. fig. 7)
Nigrini & Moore (1979; pl. 21, fig. 3)
Fig. 210, S; Riedel eiat. (1985: pl. 5, figs 2-3)
Nigrini & Moore (1979; pl. 4, figs 2a'b)
Fig. 20B. E. Nigrini & Moore (1979; pl. 4, fig. 3b)
Riedel efa/. (1985: pl 3. fig. 14b)
Fig. 21Q. l; Nignni & Lombari (1984, pi. 22, fig. 1)
Nigrini & Lumbari (1984; pl. 23, fig. 2)
Fig. 2tG, J; Nigrini ^ Moore (1979; pl- 4, fig. 3b)
Nigrini & Lombari (1984. pl. 8. fig. 1)
Nigrini & Lombari (1964; pl, 23, fig. 6)
Nigrini S Lombari (1984; pi. 23, fig. 8)
Petrushevskaya (1981 ; fig. 295)
Fig. 22n. W; Riedel et al. (1974. pl. 62. Fig. 6)
Nigrini & Lombari (1984; pl, 5. Fig. 4)
Riedel étal. (1974. pl. 56, Fig. 5)
Fig. 20D; Hollande & Enjumet (1960, pl. LUI, Fig. 1)
Fig. 20F: Riedel et ai (1985; pl. 1, Fig. 6a)
Fig. 20C; Riedel étal. (1985; pl. 1, Fig. 6c)
Fig. 201; Riedel étal. (1985; pl. 2. Fig. 2b)
Fig. 20K. L
Nigrini & Moore (1979; pl. 17, figs 1a-b)
Riedel étal. (1985; pl. 2. figs 11a-b)
Nigrini A Lnmbnri (1984; pl. 13, Fig. 3)
Riedel étal (1985; pt. 4.,Fig.9)
Fig. 22M. Riedel êt al. (1965, pl, 4, fig.11)
Fig. 22F L; Riedel et ai (1985; pl. 3, fig, 15c)
Riedel étal (1985: pt-5, Fig. 8b)
Fig. 21H. L, M; Riedel étal. (1985; pl. 5, Fig. 8a)
Pelru.shevsknyn (197l, Fig. 58 l-X)
Fig. 210, S
Nigrini & Lombari (1984; pf. 12, Fig. 3)
Nigrini 8 Lomban (1984; pl. 31, Fig. 4)
Nigrini & Lombari (1984; pl. 12, Fig. 1)
Riedel étal. (1985; pl. 2, figs 3-4)
Riedel étal. (1974, pl 60. figs4-6)
Nigrini & Lombari (1984; pl. 9,. Fig. 1)
Nigrini & Lombari (1984; pl. 11, Fig. 2)
GEODIVERSITAS • 1999 • 21 (4)
613
Cortese G. & Bjorkiund K. R.
Taxa References for illustrations
Gig. 20A; Nigrini & Lombari (1984; pl. 11, Fig. 1)
53 Spongotrochus resurgens osculosa
54 Hexalonche sp.
55 Stichocorys delmontensis
56 Stichocorys delmontensis (dwarf)
57 Stichocorys delmontensis (thick)
58 Stichocorys delmontensis (thin)
59 Stichocorys peregrina?
60 Stylochlamydium venustum
61 Stylodictya aculeata
62 Stylodictya îenuispina
63 Stylodictya validispina
64 Stylosphaera angelina
65 Thecosphaera grecoi
66 Theocapsa? cretica
67 Trissocyclidae sp.
68 Zygocircus productus
Fig. 21A-E; Nigrini & Lombari (1984; pl. 25, Fig. 4)
Nigrini & Lombari (1984; pl. 25, Fig. 6)
Fig. 20M; Nigrini & Lombari (1984; pl. 11, Fig. 3)
Jorgensen (1905, pl X, Fig. 41)
Bjorkiund (1976, pl. 4, Fig. 5)
Bjorkiund (1976, pl. 4, fig. 4)
Riedel étal. (1974, pl. 56, fig. 2)
Fig. 20H; Riedel étal. (1974, pl. 56, fig. 3)
Fig. 22T-V Riedel étal. (1985; pl. 4, fig. 15)
Fig. 21T-Y
Nigrini & Lombari (1984; pl. 15, figs 1-2)
614
GEODIVERSITAS • 1999 • 21 (4)
Correse G. & Bjorklund K. R.
Fig. 21. — A-E, Stichocorys delmontensis {D17.1); F, J, Anthocyrtidium ehrenbergi (D20.2): G, I, Cornutella profunda (D17.1);
H, L, M, Lithomitra lineaîa (D4.9); K, N, Botryostrobus auritus/australis (D21.22); O, S, Carpocanistrum sp. (D26.11);
P-R, Lophophaena sp. (D26.11): T-Y, Trissocyclidae sp. (D17.1). Scale bar; 100 pm.
GEODIVERSITAS
f
W , ï^^-'4^ ’M
[ ■
1 • rnms. - - ,prt" J
i jWüiv ^
kj3»MI.^J£.
Cortese G. & Bjorkiund K. R.
Table 2. — Estimated âge above section base, radiolarian flux, number of radlolarians per gram CaCOg-free sédiment, number of
nassellarians. spumellarians and radioiarians per gram bulk sédiment, Spumellaria/Nassetiaria ratio, CaC 03 and TOC content for
each of the samples collecied during the 1995 fieid-trip (one sample for each lithology)
Sample
Code
Years above
Section base
Flux
in ky/cm*
Rads
gct
Number of
Spum/g
Number of
Nass/g
Number of
Rads/g
S/N
ratio
Percent
CaCO^
Percent
TOC
D36
757000
23698
62123
28553
12437
40990
2.30
50.09
0.100
D35
736000
1351
1447
173
1038
1211
0.17
16.29
0.095
D34
715000
8397
6595
810
5263
6073
0.15
7.92
0.000
D33
694000
108560
269415
107042
33627
140669
3.18
47.79
0.116
D32
673000
27978
37831
14613
5874
20487
2-49
45.85
0,139
D31
652000
48261
55561
23518
20356
43874
1.16
21.04
0.096
D30
631000
3261
4787
1786
2273
4058
0,79
15.22
0,144
D29
610000
8967
8240
2141
4587
6728
0.47
18.35
0 158
D28
589000
61163
73836
19427
14417
33845
1.35
54.16
0.131
D27
567000
24777
41790
7242
5850
13092
1.24
68-67
0 070
D26
546000
303644
256157
95126
74368
169495
1.28
34.34
0.129
D21
525000
57511
71345
14480
20916
35396
0.69
50.39
0.174
S 21
504000
3217
2121
437
1310
1747
0.33
17.64
0.133
D20
399000
46565
45089
12654
10328
22982
1.23
49.03
0.117
S 20
399000
139
155
98
0
98
>1
36.62
0.106
D 19
378000
101764
65397
16756
28966
45722
0.58
30.09
0.120
S 19
378000
0
0
0
0
0
-
17.76
0.069
D 18
357000
31793
64398
20134
32215
52349
0.63
1871
0-115
S 18
357000
15897
34789
9099
12408
21507
0.73
38.18
0.139
D 17
336000
63761
54258
14449
29106
43555
0.50
19.73
0.113
S 17
336000
0
0
0
0
0
-
33.52
0.118
D 16
315000
40402
118495
20516
39013
59529
0.53
49.76
0.129
S 16
315000
0
0
0
0
0
_
23.73
0.063
D 15
294000
110185
109436
22199
46934
69133
0.47
36.83
0.091
S 15
294000
505
500
312
0
312
>1
37.68
0.139
S 14
273000
0
0
0
0
0
-
40.49
0.121
D 13
273000
62848
76710
21456
24369
45825
0.88
40.26
0-149
S 13
252000
1598
2033
1463
0
1463
-
28.02
0.148
D 12
231000
39217
48788
17328
13017
30345
1.33
37-80
0.144
S 12
231000
0
0
0
0
0
-
24.38
0.115
D 11
210000
54022
43391
7658
24324
31982
0.31
26.29
0.165
S 11
210000
77799
55215
26947
16105
43053
1.67
22.03
0.167
D 10
189000
41511
35230
14907
12836
27743
1.16
21.25
0.150
S 10
189000
0
0
0
0
0
-
16.07
0.112
D9
168000
117065
53363
21005
19977
40982
1.05
23.20
0.166
S9
168000
0
0
0
0
0
-
25.59
0.110
D8
147000
52728
33096
15088
12665
27753
1.19
16.14
0.173
S8
147000
0
0
0
0
0
-
13.67
0.150
D7
126000
124783
50841
15618
27358
42977
0.57
15.47
0.144
S7
126000
609
284
115
115
230
1.00
18.82
0.172
D6
105000
109467
44065
18243
17761
36004
1.03
18.29
0.105
S6
105000
293
173
0
122
122
<1
29.35
0.178
D5
84000
89435
66214
17864
18447
36311
0.97
45.16
0.111
S5
84000
478
306
117
117
234
1.00
23.64
0.154
D4
63000
45446
34871
13299
10000
23299
1 33
33.19
0.118
S4
63000
0
0
0
0
0
-
30.59
0.070
D3
42000
0
0
0
0
0
-
34.48
0.083
D2
21000
0
0
0
0
0
-
28.94
0.058
S2
21000
190
169
0
120
120
<1
29.20
0.166
618
GEODIVERSITAS • 1999 • 21 (4)
Radiolarians from the cyclic Messinian diatomites of Sicily
Table 3. — Number of nassellarians, spumellarians and radiolarians per gram bulk sédiment and S/N ratio for each of the samples of
diatomite D7. Cycle 7 is 84.9 cm thick, with the diatomite and claystone lîthologies making up 46.9 and 38 cm, respeclively.
Sample
Number
Distance from base
(cm) (%)
Years from base
cycle section
Spum/g
Number of
Nass/g
Rads/g
Spum/Nass
ratio
F97- Dia 7.28
84.9
1.000
21000
147000
13686
21773
35459
0.63
F97- Dia 7.27
82.6
0.973
20431
146431
12306
21632
33938
0.57
F97- Dia 7.26
81.2
0.956
20085
146085
11261
15878
27140
0.71
F97- Dia 7.25
79.7
0.939
19714
145714
13445
20483
33929
0.66
F97- Dia 7.24
78.2
0.921
19343
145343
17670
24537
42207
0.72
F97- Dia 7.23
76.0
0.895
18799
144799
19434
29434
48868
0.66
F97- Dia 7.22
75.1
0.885
18576
144576
14175
18986
33162
0.75
F97- Dia 7.21
73.0
0.860
18057
144057
14725
29126
43851
0.51
F97- Dia 7.20
72.1
0.849
17834
143834
15123
30435
45558
0.50
F97- Dia 7.19
70.3
0.828
17389
143389
15570
26023
41594
0.60
F97- Dia 7.18
68.0
0.801
16820
142820
18945
34892
53837
0.54
F97- Dia 7.17
66.5
0.783
16449
142449
17131
27888
45020
0.61
F97- Dia 7.16
64.8
0.763
16028
142028
27557
33239
60795
0.83
F97- Dia 7.15
63.1
0.743
15608
141608
25047
36622
61670
0.68
F97- Dia 7.14
61.4
0.723
15187
141187
16997
23597
40594
0.72
F97- Dia 7.13
60.4
0.711
14940
140940
24356
33262
57618
0.73
F97- Dia 7.12
59.0
0.695
14594
140594
29529
37059
66588
0.80
F97- Dia 7.11
57.5
0.677
14223
140223
29266
41253
70518
0.71
F97- Dia 7.10
56.0
0.660
13852
139852
21444
34914
56358
0.61
F97- Dia 7.9
54.4
0.641
13456
139456
14881
25794
40675
0.58
F97- Dia 7.8
52.7
0.621
13035
139035
18472
35694
54167
0.52
F97- Dia 7.7
50.2
0.591
12417
138417
17090
39594
56684
0.43
F97- Dia 7.6
48.3
0.569
11947
137947
25338
52196
77534
0.49
F97- Dia 7.5
46.5
0.548
11502
137502
30425
33884
64308
0.90
F97- Dia 7.4
44.8
0.528
11081
137081
28993
24029
53022
1.21
F97- Dia 7.3
43.0
0.506
10636
136636
72072
45195
117267
1.59
F97- Dia 7.2
41.3
0.486
10216
136216
38832
60745
99577
0.64
F97- Dia 7.1
39.6
0.466
9795
135795
49799
36419
86217
1.37
GEODIVERSITAS • 1999 • 21 (4)
619
Cortese G. & Bjorklund K. R.
Table 4. — Number of nassellarians. spumellarians and radiolarians per gram bulk sédiment and S/N ratio for each of the samples of
diatomite D21. Cycle 21 is 74 cm thick, with the diatomite and claystone lithologies making up 64 and 10 cm, respectively.
Sample
Number
Distance from base
(cm) (%)
Years from base
cycle section
Spum/g
Number of
Nass/g
Rads/g
Spum/Nass
ratio
F95- Dia21.0
74.0
1.000
21000
420000
16311
26866
43177
0.61
F95- Dia21.1
73.0
0.986
20716
419716
15772
24497
40268
0.64
F95- Dia21.2
72.0
0.973
20432
419432
15846
24311
40167
0.65
F95- Dia21.3
71.0
0.959
20149
419149
21343
27655
48998
0.77
F95- Dja21.4
70.0
0.946
19865
418865
22346
17318
39665
1.29
F95- Dia21.5
69.0
0.932
19581
418581
15962
21009
36972
0.76
F95* Dia21.6
68.0
0.919
19297
418297
13426
23495
36921
0.57
F95- Dia 21.7
67.0
0.905
19014
418014
16762
19810
36571
0.85
F95- Dia 21.8
66.0
0.892
18730
417730
11816
24378
36194
0.48
F95- Dia 21.9
65.0
0.878
18446
417446
18607
16895
35502
1.10
F95- Dia 21.10
64.0
0.865
18162
417162
15256
22692
37949
0.67
F95- Dia 21.11
63.0
0.851
17878
416878
16951
19723
36674
0.86
FOS* Dia 21.12
62.0
0.838
17595
416595
10808
17795
28603
0.61
F95- Dia 21.13
61.0
0.824
17311
416311
17584
21292
38876
0.83
F95- Dia 21.14
59.5
0.804
16885
415885
10758
23182
33939
0.46
F95- Dia 21.15
58.0
0.784
16459
415459
11364
23529
34893
0.48
F95- Dia 21-16
56.5
0.764
16034
415034
16412
23282
39695
0.70
F95- Dia 21.17
55.0
0.743
15608
414608
11944
25833
37778
0.46
F95- Dia 21.18
53.5
0.723
15182
414182
10976
23018
33994
0.48
F95- Dia 21.19
52.0
0.703
14757
413757
8411
19938
28349
0.42
F95- Dia 21.20
50.5
0.682
14331
413331
12791
33866
46657
0.38
F95- Dia 21.21
49.0
0.662
13905
412905
12431
27901
40331
0.45
F95- Dia 21.22
47.5
0.642
13480
412480
14480
20916
35396
0.69
F95- Dia 21.23
46.0
0.622
13054
412054
10853
21318
32171
0.51
F95- Dia 21 24
44.5
0.601
12628
411628
11887
22304
34191
0.53
F95- Dia 21.25
43.0
0.581
12203
411203
15833
27024
42857
0.59
F95- Dia 21.26
41.5
0.561
11777
410777
13523
13295
26818
1.02
F95- Dia 21.27
40.0
0.541
11351
410351
12529
14988
27518
0.84
F95- Dia 21.28
38.5
0.520
10926
409926
10684
13355
24038
0.80
F95- Dia 21 29
37.0
0.500
10500
409500
10462
14402
24864
0.73
F95- Dia 21,30
35.5
0.480
10074
409074
14321
18272
32593
0.78
F95- Dia 21 31
34.0
0.459
9649
408649
13921
16241
30162
0.86
F95- Dia 21,32
32.5
0.439
9223
408223
13079
16898
29977
0.77
F95- Dia 21 33
31.0
0.419
8797
407797
13270
14692
27962
0.90
F95- Dia 21.34
29.5
0.399
8372
407372
16085
22569
38653
0.71
F95- Dia 21 35
28.0
0.378
7946
406946
15179
13616
28795
1.11
F95- Dia 21.36
26.5
0.358
7520
406520
19036
21687
40723
0.88
F95- Dia 21-37
25.0
0.338
7095
406095
15556
14198
29753
1.10
F95- Dia 21.38
23.5
0.318
6669
405669
18750
17428
36178
1.08
F95- Dia 21.39
22.0
0.297
6243
405243
18810
19881
38690
0.95
F95- Dia 21.40
20.5
0.277
5818
404818
35455
21932
57386
1.62
F95- Dia 21.41
19.0
0.257
5392
404392
30383
26077
56459
1.17
F95- Dia 21 42
17.5
0.236
4966
403966
34852
23517
58369
1.48
F95- Dia 21 43
16.0
0.216
4541
403541
34709
14071
48780
2.47
F95- Dia 21 44
14.5
0.196
4115
403115
46758
29371
76130
1.59
F95- Dia 21.45
13.0
0.176
3689
402689
44615
41868
86484
1.07
F95- Dia 21.46
11.5
0.155
3264
402264
48364
42545
90909
1.14
F95- Dia 21.47
10.0
0.135
2838
401838
41189
72687
113877
0.57
620
GEODIVERSITAS • 1999 • 21 (4)
Radiolarians from the cyclic Messinian diatomites of Siciiy
Table 5. — Number of nassellarians, spumellarians and radiolarians per gram bulk sédiment and S/N ratio for each of the samples of
diatomite D28. Cycle 28 is 95.7 cm thick, with the diatomite and claystone lithologles maklng up 49.7 and 46 cm, respectively.
Sample
Number
Distance from base
(cm) (%)
Years from base
cycle section
Spum/g
Number of
Nass/g
Rads/g
Spum/Nass
ratio
F97- Dia 28.36
95.7
1.000
21000
588000
6911
256
7167
27.00
F97- Dia 28.35
94.2
0.984
20671
587671
5876
100
5976
59.00
F97- Dia 28.34
92.5
0.967
20298
587298
5753
105
5858
55.00
F97- Dia 28.33
91.1
0.952
19991
586991
3035
160
3195
19.00
F97- Dia 28.32
89.9
0.939
19727
586727
4006
148
4154
27.00
F97- Dia 28.31
88.8
0.928
19486
586486
3482
418
3900
8.33
F97- Dia 28.30
87.6
0.915
19223
586223
5307
83
5390
64.00
F97- Dia 28.29
85.5
0.893
18762
585762
3765
235
4000
16.00
F97- Dia 28.28
84.0
0.878
18433
585433
3282
290
3571
11.33
F97- Dia 28.27
82.3
0.860
18060
585060
4340
362
4702
12.00
F97- Dia 28.26
80.6
0.842
17687
584687
3623
580
4203
6.25
F97- Dia 28.25
79.4
0.830
17423
584423
4364
285
4649
15.33
F97- Dia 28.24
77.7
0.812
17050
584050
3583
489
4072
7.33
F97- Dia 28.23
76.7
0.801
16831
583831
2490
1452
3942
1.71
F97- Dia 28.22
75.7
0.791
16611
583611
5724
818
6542
7.00
F97- Dia 28.21
74.3
0.776
16304
583304
5889
1501
7390
3.92
F97- Dia 28.20
73.0
0.763
16019
583019
8918
2778
11696
3.21
F97- Dia 28.19B
72.0
0.752
15799
582799
3101
1163
4264
2.67
F97- Dia 28.19A
70.8
0.740
15536
582536
6393
2295
8689
2.79
F97- Dia 28.18
69.8
0.729
15317
582317
5938
3438
9375
1.73
F97- Dia 28.17
68.7
0.718
15075
582075
7943
3010
10953
2.64
F97- Dia 28.16
67.4
0.704
14790
581790
7177
3589
10766
2.00
F97- Dia 28.15
66.3
0.693
14549
581549
6377
3050
9427
2.09
F97- Dia 28.14
64.9
0.678
14241
581241
8701
3016
11717
2.88
F97- Dia 28.13
63.7
0.666
13978
580978
12808
4803
17611
2.67
F97- Dia 28.12
62.5
0.653
13715
580715
19118
5042
24160
3.79
F97- Dia 28.11
61.5
0.643
13495
580495
21261
6944
28205
3.06
F97- Dia 28.10
60.4
0.631
13254
580254
18448
4580
23028
4.03
F97- Dia 28.9
58.5
0.611
12837
579837
17108
11153
28261
1.53
F97- Dia 28.8
57.2
0.598
12552
579552
18689
8611
27299
2.17
F97- Dia 28.7
55.9
0.584
12266
579266
33293
15865
49159
2.10
F97- Dia 28.6
54.7
0.572
12003
579003
36830
18192
55022
2.02
F97- Dia 28.5
53.3
0.557
11696
578696
27660
13032
40691
2.12
F97- Dia 28.4
52.2
0.545
11455
578455
41333
10917
52250
3.79
F97- Dia 28.3
50.5
0.528
11082
578082
42285
12725
55010
3.32
F97- Dia 28.2
49.1
0.513
10774
577774
35327
8323
43650
4.24
F97- Dia 28.1
47.1
0.492
10335
577335
41444
10444
51889
3.97
GEODIVERSITAS • 1999 • 21 (4)
621
Cortese G. & Bjorklund K. R.
Table 6. — Varimax Faclor Components Matrix {Samples vs Factors).
Samples
Factor 1
Factor 2
Factor 3
Factor 4
Factor 5
Factor 6
Factor 7
Factor 8
Factor 9
D36
0.082
0.724
0.078
-0.016
0-418
0-398
0.049
0.059
0.074
D35
0.007
0.149
0.009
-0.011
-0 003
0.904
-0.003
-0.011
-0.004
D34
0.858
0.175
0.092
-0.011
-0.079
-0.Ô34
-0.001
0 425
-0 036
D33
0.043
0.423
0.048
-0.013
0.883
-0,021
0.092
-0.035
-0.003
D32
0.089
0.842
0.092
-0.029
0.489
0.044
0.091
0.042
0.093
D31
0.505
1 0.785_,
0.134
-0.025
0.223
0.048
0.021
-0.155
0.157
D30
0.111
0.894 i
0.108
0.247
-0.140
0.109
0.001
0.131
0.033
D29
0.115
0.863
0.043
-0.052
-0 113
-0.113
0.005
0.403
•0.010
D28
0.207
0.672
0.032
-0.062
0.024
-0.229
0.026
-0.281
-0 233
D27
0 122
0901
0.124
0.003
-0.086
0.247
0.043
-0.094
Û.Û31
D26
0.158
0.793
0.063
0.274
0.271
0.050
0.053
0.427
-o.on
D21
0-623
0.265
0,066
-o.on
-0.043
0.018
0.083
-0.003
0.708
S21
0.008
0.074
0.010
-0.001
0.086
0.005
0-993
0-003
0.034
D20
0.133
0.832
0.121
-0.026
0.263
0.052
0.048
-0.419
0.035
D19
0.976
1 0.141
0.120
-0.007
-0.013
0.000
0.010
-0.084
-0.073
D18
1 0.981
0.036
0.124
0.005
-0.036
0.045
0.009
-0.072
-0.003
S18
0.964
0.099
0.133
0.004
0.024
0043
0.046
-0.109
-0.016
D17
0.958
0.197
0.138
-0.007
0.040
-0,001
0.027
-0.115
-0.035
D16
0.226
0.097
0.965
0.005
0.049
0.012
0.003
-0.070
0.009
S16
0.039
0.045
0.004
0.997
0.004
-0.017
0.000
0.000
-0.006
D15
0,695
-0.105
0.698
0.005
0.068
0.000
0.006
0 083
0-022
D13
0.978
0.059
0.108
0.011
0.118
0.037
0.016
0 070
0.079
S13
0.002
0.Q50
-0.005
0.997
0.004
•0013
0.007
0.009
-0.006
D12
0,022
0.508
0.807
-0.005
-0.146
0.001
0.002
-0.087
0.139
D11
' 0.633
-0.109
0.755
0.004
0.024
•0.011
0.005
0.079
-0.026
SU
0.960
0.030
0.101
0.074
0.182
0.072
0.013
0.098
-0.002
D10
>0.069
0,115
0.982
0.000
0.109
•0.011
0.001
-0.021
0.018
D9
0.870
0.259
0.110
-0.010
0.010
0.013
0.011
-0.045
0.398
D8
0.121
0.800
0.065
-0.041
0.171
-0 112
0-019
-0.008
0 499
D7
0.984
0112
0.122
-0.005
0.053
0.008
0.014
0.012
0.014
D6
0.934
0.226
0.116
-0.012
-0.043
-0.023
0.011
-0.115
0.200
D5
0.448
0.113
0.876
0.001
0052
0021
0.017
0.116
0.038
D4
0_,876
, 0.206
0.321
-0.004
0.111
0.082
0.042
0.176
0.079
Var.
35,414
22,699
14,255
6,486
4.792
3,507
3,110
2.951
3,304
Cum. Var.
35,414
58,113
72,368
78,854
83,646
87,153
90.263
93,215
96,519
Table 7. — Scaled Varimax Factor Scores Matrix (Species vs Factor Scores). Absolute values of factor scores higher than one hâve
been outlined.
Factor 1
Factor 2
Factor 3
Factor 4
Factor 5
Faclor 6
Faclor 7
Factor 8
Factor 9
Anthocyrtidium ehrenbergi
-0.037
-0.048
0.000
0.011
-0.262
-0.014
3.111
0.018
0.065
Botryostrobus auritus/australis
0.183
0.264
-0.088
-0.058
-0.209
-0.488
-0.030
-0.300
3.360
Carpocanistrum sp.
0.000
0.060
0.005
-0.002
0.309
0.012
1.819
0.036
•0.073
Cenosphaera sp. 2
-0.005
-0.024
-0.012
-0.016
-0.164
1.939
-0.014
-0 197
-0,016
Didymocyrtis sp.
0.006
0.147
-0.031
1 3.595
0.013
-0.065
-0.010
0.020
-0.026
Lâfcoidea sp.
0.169
2.160
0.198
0.002
-0.220
1 116
0.046
0.705
0.465
Utbomeiissa L se/osa
0.266
1.239
-0.136
-0.224
-0.599
-1.082
0.003
-0.767
1.197
Lithomitra sp. et. L Uneaîa
-0.376
-0.307
3.547
0.022
-0.010
-0.093
•0-009
0 176
0.034
Porodiscus sp.
0.068
1.282
0.151
-0.077
3.249
-0.164
0.059
-0.349
•0.027
Spongotraebus gtadalis/osculosa
0.066
1.472
0051
•0.102
-0.724
-0.602
-0.068
2.540
-0.168
Stichocorys delmontensis
3.635_j
-0.509
0.316
0.018
0.161
0,099
0 032
0.298
-0.087
Theocapsa 7 cretica
-0.050
0.095
-0.014
-0.033
•0.046
2484
•0.021
0,029
■0.095
TrissocycOdae sp.
0.459 1
1.591
0.473
0.018
-1.118
-0.002
-0.009
-2.256
-0.089
622
GEODIVERSITAS • 1999 • 21 (4)
Radiolarians from the cyclic Messinian diatomites of Sicily
Table 8. — Factor component peaks (values higher (han 0.400) used to establish the most important “radiolarian factor peaks" throu-
ghout the section. The peaks are coded as X.Y, where X represents the factor number and Y represents a reference number for the
“factor peaks”. arranged in an ascending order from base to top of the section.
Samples
Factor
Peaks
Factor
Component
Sapropel
Age (Ma)
Diatomite
Age (Ma)
Astro.
âges
Tripoli
Cycles
D36
2.12
0.724
6.183
S36
6.194
6.132
T43
D35
6.1
0.904
6.204
S35
6.215
6.145
T42
D34
1.16
0.858
6.225
8.4
0.425
S34
6.236
6.164
T41
D33
2.11
0.423
6.246
5.2
0.883
S33
6.257
6.184
T40
D32
2.10
0.842
6.267
5.1
0.489
S32
6.278
6.205
T39
D31
1.15
0.505
6.288
2.9
0.785
S31
6.299
6.226
T38
D30
2.8
0.894
6.309
S30
6.320
6.257
T37
D29
2.7
0.863
6.331
8.3
0.403
S29
6.342
6.278
T36
D28
2.6
0.672
6.352
S28
6.363
6.299
T35
D27
2.5
0.901
6.373
S27
6.384
6.320
T34
D26
2.4
0.793
6.394
8.2
0.427
S26
6.405
6.342
T33
D26
S25
*
T32
D24
S24
6.373
T31
D23
S23
6.393
T30
D22
S22
6.413
T29
D21
1.14
0.623
6.499
9.2
0.708
S21
7.1
0.993
6.510
6.432
T28
D20
2.3
0.832
6.520
8.1
-0.419
S20
6.531
6.452
T27
D19
1.13
0.976
6.541
S19
6.552
6.470
T26
D18
1.12
0.981
6.562
S18
1.11
0.964
6.572
6.490
T25
D17
1.10
0.958
6.583
S17
6.594
6.509
T24
D16
3.6
0.965
6.604
S16
4.2
0.997
6.614
6.524
T23
GEODIVERSITAS • 1999 • 21 (4)
623
Cortese G. & Bjorklund K. R.
Samples
Factor
Peaks
Factor
Component
Sapropel
Age (Ma)
Diatomite
Age (Ma)
Astro.
âges
Tripoli
Cycles
D15
1.9
0.695
6.625
3.5
0.698
S15
6.636
6.544
T22
D14
S14
6.563
T21
D13
1.8
0.978
6.667
S13
4.1
0.997
6.678
6.585
T20
D12
2.2
0.508
6.688
3.4
0.807
S12
6.699
6.606
T19
D11
1.7
0.633
6.709
3.3
0.755
S11
1.6
0.960
6.719
6.635
T18
D10
3.2
0.982
6.730
S10
6.741
6.657
T17
D9
1.5
0.870
6.751
S9
6.762
6.678
T16
D8
2.1
0.800
6.772
9.1
0.499
S8
6.783
6.699
T15
D7
1.4
0.984
6.793
S7
6.804
6.721
Tl 4
D6
1.3
0.934
6.814
S6
6.825
6.752
Tl 3
D5
1.2
0.448
6.835
3.1
0.876
S5
6.846
6.771
T12
D4
1.1
0.876
6.856
S4
6.867
6.792
T11
D3
6.877
S3
6.888
6.810
T10
D2
6.898
S2
6.909
6.829
T9
D1
6.919
S1
6.930
6.847
T8
624
GEODIVERSITAS • 1999 • 21 (4)
Taxonomie study of Ordovician (Llanvirn-
Caradoc) Radiolaria from the Southern Uplands
(Scotland, U.K.)
Taniel DANELIAN
Department of Geology and Geophysics.
The University of Edinburgh, West Mains Road, Edinburgh EH9 3JW (U.K.)
Laboratoire de Micropaléontologie,
Université Pierre et Marie Curie, CNRS-ESA 7073,
C. 104, T. 15-25, 4 place Jussieu, F-75252 Paris cedex 05 (France)
danelian@ccr.jussieur.fr
KEYWORDS
Radiolaria,
Ordoviciaa,
Llanvirn,
Caradoc,
Southern Uplands,
Scotland,
United Kingdoni,
laperas Océan,
Caledonides,
radiolarian chert.
Danelian T. 1999. — Taxonomie study of Ordovician (Llanvirn-Caradoc) Radiolaria from the
Southern Uplands (Scotland. U.K.), in De Wever P. & Caulet J.-P. (eds), InterRad VIII.
Paris/Blerville 8-13 septembre 1997. Geodiversitas 21 (4) :625 ‘635.
ABSTRACT
Over 100 years ago, Hinde (1890a, b) described Radiolaria in thin sections
from Ordovician chert.s of the Southern Uplands of Scotland and established
for the First time the presence of the group in the Early Palaeozoic.
Radiolarians from the Southern Uplands hâve now been successfully cxtrac-
tcd by hydrofluoric acid ieaching and the systematic palaeontolog)^ ot some
of the yieldcd morphorypes is discusscd herein. The studied fauna corne
from two outerops of radiolarites: one at upper Hawkwood Burn and the
orher north-west of the village of Crawford. Amongst the radiolarians cxtrac-
red from the latter ourcrop, the généra Imnihlguttii and Prdtoccratoikiscum
are common. The presence of the spccies hianihiguttti diffusa (Hinde),
Inanibigiitîa (?) minuta Wang and înanihigutta sp. cf. verrucultt (Nazarov)
allows the corrélation of the Crawford fauna with ihc Haplcntactinm juncta-
Jnanigîitta unica assemblage in Nazarov s (1988) biozonation, of upper
Llanvirn (Llandeilian)-Caradoc âge, and with the assemblage documenred by
Wang (1993) in China, of earliest Caradoc âge.
GEODIVERSITAS • 1999 • 21 (4)
625
Danelian T.
MOTS CLÉS
Radiolairfs,
Ordovicien,
Llanvirnicn,
CamdoaVn,
l.cojwe.
Royaume Uni,
radîolarites,
Océan lapetus,
Calédonides.
RÉSUMÉ
Etude taxonomique des radiolaires ordoinciens (Llanvirnien’Caradocien) de
Southern IJplands (Écàsse^ R. U.).
Des radiolaires ordoviciens ont été extraits à l’acide fluorhydrique des radio-
larites de Tunicé structurale des Southern Uplands en Écosse. Étudiés en
lame-mince il y a plus d’un siècle (Hinde b) ceux-ci oui servi comme
témoin de la présence certaine de ce groupe dans Je Paléo/oiquc inferieur. La
faune ici étudiée vient de deux affleurements: riin des radiol.iikcs rouges
brunâire.s à Hawkvvood Burn, l'autre des radiolaritcs grises qui affleurent au
nord-ouest du village de Crawfdrd. La paléontologie sysrémariqiie de cer¬
taines formes intéressantes est ici discutée. Les genres Inanihtgutra et
Protoceratoîkiscum sont communs parmi les radiolaires extraits des radiol.i-
rites de Crawford. La présence des espèces Inanibigutta dijfusa (Hinde)»
fnanihigutta (?) minuta Wang et Inanibigutta sp. cf. verrucula (Na^arov)
permet la corrélation de la faune de Crawfoid avec l’association
Haplenracîintd junaa-Inaniguna unica de la biozonation de Nazarov (1988),
d’âge Llanvirnien supérieur (Llandeilien)-Caradocien, ainsi qu’avec l’associa¬
tion décrite par Wang (1993) en Chine, d’âge Caradocien basal.
INTRODUCTION
Despite significant improvements in our under-
standing of Palaeoxoic Radiolaria over the last
35 years, Early Palaeo/oic assemblages are still
poorly documented (Noble Sc Aîtehison 1995).
As a rcsiilr, our knowledge of the early stages of
évolution of ihi.s significant planktonic group
remains limitcd, 1 he oJdest radiolarian fossils
corne from late Cambrian shallow-water lime-
stones ol China» front which one species bas
been reccntly described (Dong et al. 1997).
Diversification markedly increased during the
Ordovician and from the limited work that has
been donc so far, it is clear thaï radiolarian cvolu-
tionary change during ihis time was more rapid
than prcvioLisly bclieved (Renz 1990). The group
has thereforc rhe potential co bccomc a valuable
biostratigraphic tool for chc yct poorly explorcd
Early Palaeozoic interval, with an increasing
number of easily identifiable, diagnostic taxa
(Aitchison ôé Noble 1997; Aitchison 1998;
Aitchison et ai 1998).
There are relanveiy few localities in the world
where well-preserved Ordovician assemblages are
known and most of them represent carbonate
platform/slope environments (Fortey ôé
Holdsworrh 1971; Nazarov Popov 1980:
Webby èic Blom 1986; Renz 1990; Wang 1993).
Radiolaria of oceanic affinitv are common, but
less wcll picservcd, in rocks of deep water origin
such as radiolarites (ribbon radiolarian cherts
with shaly intcrvals) which are ofren associated
with remnants ot oceanic crust in accretionary
prisms of ancient subduction zones. Thcy reflect
rhe significant biogeocheinical rôle that
Radiolaria staried to play in the océans (i.e. the
silica q^cle) from the Early Palaeozoic.
rhe occurrence of r.tdiolarians in cherts of the
Southern Uplands terrane (Fig. I ) has been
known for over a ccncury. It was on material
from this région that Hinde (1890a, b) first esta-
blishcd the definite presence of Radiolaria in the
Early Palaeozoic. Outerops of radiolarian cherts
were extensivdy discussed by Peach & Home
(1899), wlio were responsible for a major map-
ping compilation of tho goology of Southern
Scotland. Radiolaria from the Southern LIplands
hâve also been reported by Nicholson (1889)
and Smith (1900). The techniques available at
626
GEODIVERSITAS • 1999 • 21 (4)
Taxonomy of Ordovician Radiolaria from the S. Uplands
Fjg. 1. — Geological outline of the Southern Uplands. Based on McAdam étal. (1993).
that time only allowed for study of Radiolaria in
thin section, which provided very lirnited infor¬
mation on iheir morpliology. Tliis wa.s naturally
the case for the single previous taxonomie work
of Radiolaria trom the Southern Uplands (Hinde
1890b) in which 23 new spccics wcrc described.
Recügnising rhe potential of ladiolarian studics
in the Southern Uplands, a number of radiolar-
ian chcrc outerops hâve alteady been examined
and the results briefly reported (Danelian &
Clarkson 1998). This paper foenses on the syste-
marie study of sonie of the yicldcd morphotypes
based on modem radiolarian taxonojny (e.g.,
Nazarov & Popov 1980; Nazatov 1988). It
attempis to link matrix-free forms to the species
described originally by Itinde and to gradually
build a detailed and integrated picture of the
radiolarian assemblages occuring in these historic-
ally important Scottish localities.
ü
graptolite
zones
conodont
zones
greywacke
LEADHILLS
SUPEHGROUP
Bur.
O
" MOFFAT
<
ce
<
Aur.
gracilts
SHALE
GBOUF»
ü
ansennus
1
2
DC
Llandeil.
s
0.
Zi
>
2
3
J
Aber.
ê
O
O
Z
LU
Fenn.
? ^
Û
Œ
O
U,
Whit.
radiolarite
1
ce
ü
cr
.
0 V a e
■ ^
Mor.
lava
Fig. 2. — Simplified stratigraphy for the Lower-Middle
Ordovician of the Southern Uplands. focusing on the Crawford
Group. Lithostratigraphic terminology according to Floyd (1996).
Chronostratigraphy and biostratigraphy from Fortey et al.
(1995).
GEODIVÊRSITAS • 1999 • 21 (4)
627
Danelian T.
Fig. 3. — Geological map of the studied localities. A, north-west of the village of Crawford ^after Leggett & Casey 1980); B, at
Hawkwood Burn (after Clarkson étal. 1993).
STRATIGRAPHICAL FRAMEWORK
The Southern Uplands consist largely of
Ordoviciiin and Silurian sedimenrary rocks of
deep-w:Uer origin. The oldest rocks at ihe base of
the succession are composed mainly of basaltic
lavas, radiolarian chcjts and siliceous mudstoties.
A formai lithostratigraphy for the Ordovidan has
recently been defined by Floyd (1996). The lavas
and radiolarites are part ol the Crawford Group
of Arenig-Llanvirn âge (stfuu Fortey étal. 1995),
although based on recent conodont evidence the
Group probably extends into ihc Caradoc
(Armstrong al. 1990, 1996). The overlying
graptoliiic shalcs of the Moffat Shale Group
(Caradoc-LUndovery) are in turn succeeded by
the greywackc successions of the Leadhills
Supergroup (Fig. 2).
üntil rccendyv che varions outerops of radiolarian
cherts in the Southern Uplands were considered
as being part of a single concinuous stratigraphi-
cal sequence, spanning the Arenig and Llanvirn,
and ovcrlain by the early Caradoc [Nemagiaptus
gradlis graptoliie biozone) Moffat Shale Group
(Leggett 1978, 1987), However Armstrong rr rfA
(1996), after an extensive révision, suggested thar
radiolarian cherts could reprc.sent rwo distinct
sedimenrary events: one during ihc mid Arenig
{Oepikodus evae conodont biozonc), and onc of
latest Llanvirn to earliest Caradoc âge {Pygodus
anserinus conodont biozone).
BIOSTRATIGRAPHICAL DISCUSSION
The fauna discussed herein were extracred from
two chert samples, onc from an outerop along
the lowcr part of a trackside cutting, north-west
of the village of Crawford (National Grid
Référencé NS 941 215; Figs 1, 3A) and che other
from radiolarites cropping oui at upper
Hawkwood Burn (NS 972 248), a cributary of
the Wandei Burn (Figs 1, 3B). Samples were pro-
cesscd with the laboratory technique of hydro-
fluoric acid (Dumitrica 1970; Pessagno &
Nowport 1972).
At Hawkwood Burn, the r;tdiolarian cherts are of
red-brownish colour and were recently descrihed
by Clarkson et al. (1993). From the base of thèse
cherts a conodont launulc of lare Llanvirn
(Llandeilian)-earliest Caradoc âge was reponed
(Armstrong 1990, 1996). Alrhoiigh nidiola-
rian préservation here does not allow any confi¬
dent identification of established species, the
fauna seem to be comparable lo rhe Haplentac-
thiia juncta'InanigHtta unicn assemblage of
Nazarovs biozonation (Llandeilian-Caradoc;
Nazarov 1988; Nazarov & Ormiston 1993),
which i.s consistent with the age given on the
basis oi conodonts..
In the second locality, ncar the village of
Crawford, the radiolarites are mainly greeni.sh-
grey in culour. No biostratigraphic data other
than that provided by the radiolarians exist for
628
GEODIVERSITAS • 1999 • 21 (4)
Taxonomy of Ordovician Radiolaria from the S. Uplands
the âge of this oiitcrop. The presence of the
genus Protoceratoikiscum is important because it
suggests a Llanvirn-Caradoc iiiterval {sensu
Fortey et ai 1995) as a First approximation for
the âge of these chcrts (Daiiclian & Clakson
1998). lhe présence of ihe specLes Inanibigutta
diffiisay established hercin (Fig. 4A-D), now
allows the corrélation of tlic Crawford tauna
vvith lhe Haplentiictinia junvta-lnanigutta unica
assemblage of Nazarov’s biozonation of late
Llanvirn (Llandeilian)-Caradoc agc. Morcover,
the identification of Inünlhigutîa (?) minuta
(Fig. 4F-G) and inanibigutta sp. cf. /. vetrucula
(Fig. 4H) allows tfie corrélation of the Crawford
assemblage with the one docuinented by Wang
(1993) from the Pingliang Formation, dated as
of carliest Caradoc âge (commun interval be-
tween the N. gracilis and P. anserinus biozones).
SYSTEMATIC PALAEONTOLOGY
Subclass RADIOLARIA Muller, 1858
Superorder POLYCYSTINA Ehrenberg, 1838
entend. Ricdel, 1967
Order SPUMELLAHIA Ehrenberg, 1857
Family InaniguTTIDAE
Nazarov & Ormiston, 1984
Genus Inanibigutta Nazarov, 1988
Inanibigutta Nazarov, 1988: 56. — Nazarov &
Ormiston 1993: 35.
Typf SPECIRS. — Entactinosphaera aksakensis Nazarov,
1975.
Inanibigutta diffusa (Fïinde, 1890b)
(Fig. 4A-D)
Suutroplegtna diffiLKum Hindt, 1890b: 50, pl. 4, fig. 4.
Entactinosphaera ? diffusa (Hinde) - Nazarov Popov
1980: 37, 38, rexi-hg. 16, pL 2, fig. 4, pl. 13, fig. 8.
Inanibigutta dijftisa (blinde) - Nazarov 1988, fig. 31.
OcCL’RKENCF.. — Middic Ordovician (l.landcilan lo
Lower Caradoc) Bestomakskaya Suite, Eastern
Kazakhstan, southwestern foothills of the Chingiz
Range, Chagaii River (Nazarov & Popov 1980);
Broughron Hcights, Peehlcshire, Southern Uplands
(Hinde 1890b); grey radiolarites of the Crawford
track, Southern Uplands, this study.
MEASURëMENT.S (one specimen). — Diameter of che
flattened part of the outer shell, 133-136 pm: dianic-
cer ol rhe elongated part of the outer .shell, 152-
154 pm; length of main spines, 40-50 pm; diameter
of inner shell, 63-66 pm.
Description
A nearly spherical outer shell bearing six radia-
ting main spines positioned with hexagonal sym-
metry. The outer shell is perforated by circulât to
oval pores of varions dimensions. The main
spines are robust. rod-like, and gently tapering
distally. They are almost half che length of the
diameter of che outer shell. A nuniber of needle-
like sccondary spines cover ihc surface of rhe
outer shell. The inner shell is relarively small,
perforated and linked to the outer .shell through
radial beams that continue as main spines out-
side the outer shell. Its position is eccentric in rela¬
tion to the center of the outer shell (Fig. 4C-D).
Remarks
The eccentric position of the inner shell was
pointed out by Nazarov (/// Nazarov & Popov
1980) and can be observed on the holotype illus-
traced by Hinde (1890b), which is obviously a
section through an équatorial plan encompassing
four s'pines. Only one specimen in our sample
was identifiable with certamty. NeverchelesSj
several orher naturally broken but incomplète
specimens may bclong to this species (Fig. 4E).
The dimensions of our specimen correspond pre-
cisely co the ones ineasured by Hinde (1890b).
However, Nazarov (in Nazarov & Popov 1980)
accepted a largcr variabÜicy of sîze for this spe¬
cies, especially as far as the length of spines ïs
concerned. The latrer author also mencioned that
a spongiform texture was observed on the outer
shell of somc of his specimens from Kazakhstan.
Inanibigutta (?) minuta Wang, 1993
(Fig. 4F-G)
Inanibigutta minuta Wang, 1993: lÜO, pl. 6, figs 9-
12 .
Occurrence. — Middle part of the Pingliang
Formation, Gansii Province, China (Wang 1993);
grey radiolarites of the Crawford track, Southern
Uplands, this study.
GEODIVERSITAS • 1999 • 21 (4)
629
Danelian T.
Fig. 4. — Scanning électron micrographs of radiolaria extracted from cherts of the Southern Uplands. A-D, Inanibigutta diffusa
(Hinde), different views of the same specimen; C-D, view of Internai structure after the Shell was broken with a razor:
E, ? Inanibigutta diffusa (Hinde); F-G, Inanibigutta (?) minuta Wang; H, Inanibigutta sp. cf. /. verrucula (Nazarov): I. Inanibigutta sp.
cf. I. aksakensis (Nazarov); J, Inanibigutta (?) sp. A. Scale bar: A, 82 pm; B, 89,5 pm; C, 106 pm; D, 70 pm; E, 76 pm; F. G, 94 pm;
H, 124 pm; I. 83 pm; J, 129 pm.
630
GEODIVERSITAS • 1999 • 21 (4)
Taxonomy of Ordovician Radiolaria from the S. Uplands
Remarks
The observed morphotypes are identical to
Inanibigiitta minuta as described and illustrated
by Wang C1993). They possess nearly spherical
outer shellswith nunierous sccondary spines, dis-
tally tapcring main spines with apophyses in
their proximal pan and both the outer shell and
main spines hâve appropriate dimensions. Never-
theless, the attribution of this species to Inanibi'
gutta is questionable because in neither the
type-series (holotype and paratypes), nor in our
material has the exact number of main spines
cvcr bccn observed.
Inanibigiitta sp. cf. L VeiTucula
(Nazarov in Nazarov &L Popov, 1976)
(Fig. 4H)
Entactinosphacra verrucula Nazarov in Nazarov &
Popov, 1976: 408-409, fig. id. — Nazarov & Popov
1980: 38-39, texr-fig. 17, pl. 3. fîg. 6, pl. 11, fig. 6.
Inanthigutta verrucula (Na/.arov) — Nazarov 1988,
fig. 31. — Wang 1993: 100, pl. 6, figs 2-3, 5-8.
OcrURRHNCH. — Middle part of the Pingliang
Formation, Gansu Province, China (Wanç, 1993);
grey radiokrites of ihe Crawford track, Southern
Uplajids, thb .siudy.
Remarks
The illustrated specimen is comparable to /. ver-
rucula as described originally by Nazarov (1976).
The spherical outer shell (diamcter: 185 pm) is
perforated by angular to subanguLir pores and
bears short conoidal sccondar)'^ spines, as wcll as
main spines (length of intact spine: 174 pm).
Mowever, it ddfers as main spines are capering
rather than cylindrical and apophyse.s tend to be
clustercd ncar the proximal part of the spines.
My material rescmbtes Wang s (1993) spccimens
in ail respects, d'his species can bc distinguished
from L (?) minuta Wang by the larger size of its
outer shell, of diameter usually grcatcr than
180 pm, and by the longer main spines
(> 150 pm).
Inanibigutta sp.
cf L aksakensis (Nazarov, 1975)
(Fig. 41)
Entactinosphaera aksakensis 1975: 68, pl. 16,
figs 4-8, pl. 21, fig. 1 (noc 2). - Nazarov & Popov
1980: 35, 36, text*fig. 15a-b, pl. 3, figs 8, 9, pl. 8,
fig. 6, pl. 1 K figs 8, 9.
Inanibigutta aksakensis (Nazarov) — Nazarov 1988,
tcxt-lig. 17, pl. 10. fig. 7-8. — Nazarov & Ormiston
1993: 36, pl. 3, fig. 1.
Ot.]CURRENCE. — Grey radiolarites of the Crawford
track, Southern Uplands, this study.
Remarks
This morphotype has distally tapcring main
spines, small secondary spines on rhe perforated
outer shell and an inner spherical shell (diameter:
70 pm approxinvately) comparable lo /. aksaken¬
sis. Howcver, the sizc of the omet shell (diameter
less than 150 pm) is nearly hall the size ol the
larter species. The holotype of L aksakensis in
Nazarov’s (1975) work is the specimen illustrated
on pl. 21, fig. 1 (see pl. 3, fig. 8 in Nazarov àc
Popov 1980).
Inanibigutta (?) sp. A
(Fig. 4J)
Occurrence. — Red-brown radiolarites at
Hawk\vood Biirn, Southern Uplands, this study.
Description
The outer shell is a nearly perfect sphere perfora¬
ted by relarively large circular pores. It also bears
small secondary spines, Two thin rod-like main
spines, positioned along an axis and almost half
the length of rhe diameter of the outer shell, dis¬
play a few thorn-shaped apophyses,
Remarks
The nature of the thin rod-like main spines dis-
tinguishes this morphotype from ail other
Tnanigurridae. The exact number of spines and
internai srructurc of the shell are unknown.
Genus Inanigutta Nazarov & Ormiston, 1984
Inanigutta Nazarov & Ormiston, 1984: 72, 86. —
Nazarov 1988: 56.
Type species. — Entactinia unica Nazarov, 1975.
GEODIVERSITAS • 1999 • 21 (4)
631
Danelian T.
hmnigiitta (?) sp. K
(Fig. 5A)
OccURKtNCF.. — Grev radiolaritcs of the Crawford
track, Southern Uplands, this study.
Description
Small inaniguttid with six robiist main spines,
four of chem situated on an équatorial plane and
the other two along an axis perpendicular to it.
The four équatorial spincs are themselves posi-
tioned along two axes, perpendicular to each
other. Ail spines are rod-like, gently tapering dis-
tally. Thcir bases are large, perforared and joined
to the outer perforated shell in such a way as to
give a bîpyramidal outlinc. No secondary spines
are visible on the surface of the outer shell.
Remarks
Uncertainty regarding generic assignement is due
to die unknown internai structure ol this morpho-
type.
Genus Oriundogutta\^^T. 2 xov^ 1988
Oriundogutta Nazarov, 1988; 57- - Nazarov &
Ormiston 1993: 36, text-fig. 7h.
Type SPECIES. — Astroentactinia ramificans Nazarov,
1975.
iOriundopitta riisti
(Ruedeniann & Wilson, 1936)
(Fig. 5B)
? Heliosphaera riisti Ruedemann & Wilson, 1936:
1572, pi, 5. figs 13-^15, 31, pl. 7> % 8.
? Astroentitetinia ? riisti (Ruedcmanit & Wilson) —
Nazarov ÔC Popov 1980: 46, text-fig. 24, pl. 12,
figs 10-11,
Occurrence. — Red-brown radiolaritcs at Hawk-
wood Burn, Southern Uplands, this snidy.
Remarks
The size of the outer shell (diamerer 150 pm
approximately) and the presence of stout and
thinner spines are comparable to O. rüsti.
Doubts regarding taxonomie assignement remain
owing to uncertainty about the internai structure.
^Oriundogutta 1993
(Fig. 50
? Oriundogîitta bella Wang, 1993: 101, pl. 9, figs 1-
13.
Occurrence. — Grey radiolaritcs of the Crawford
track, Southern Uplands, this study.
Re.marks
Alchough only six spines are visible, their distri¬
bution and angle on the spherical shell suggests
that thcir total number is possibly cight.
Inaniguttid (?) gen. et sp. indet.
(Fig. 5D-E)
Occurrence. — Grey radiolaritcs of the Crawford
track, Southern Uplands, chis study.
Description
.Star-shaped shell, Icnricular in cros.s*secrion, bea-
ring five n»bust conical spines. I be shell is perfo-
raied by numerous pores ol varions sîzcs and
shapes (subangular, oval), Pores near the base of
the spines are disiinctly larger and elongated,
encompassing part ol the spine. The internai
structure is unknown.
Order ALBAILLELLARIA Deflandre, 1953
emend. Holdsvvorth, 1969
Family Ceratoikiscidae Holdsworth, 1969
Genus P}‘otoceratoikîscum
Goto, Umeda & Ishiga, 1992
Protoceratoikîscum Goto-, Umeda àc Ishiga, 1992: 165.
Type SPECIES. — Protoceratoikiscum chinocrystallus
Goto, Umeda & Ishiga, 1992.
Protoceratoikisctim sp.
aff. P, similistellatum Li, 1995
(Fig. 5F-G)
aff. Protoceratoikisctmi similistellatum Li, 1995: 337,
pl. 2, figs 2, 4.
Occurrence. — Grey radiolaritcs of the Crawford
track, Southern Uplands, this study.
632
GEODIVERSITAS • 1999 • 21 (4)
Taxonomy of Ordovician Radiolaria from the S. Uplands
Fig. 5. — Scanning électron nnicrographs of radiolaria extracted from cherts of the Southern Uplands. A. Inanigutîa (?) sp. K;
B. ? Oriundogutta rüsti (Ruedemann & Wilson); C, ? Oriundogutta bella Wang: D E, Inaniguttid (?) gen. et sp. indet.;
F'G, Protoceratoikiscum sp. aff. P. similistellatum. Scale bar: A. 51 pfT»; B. 79 pm; C, 73 pm; D. 65 pm; E, 72 pm; F. 63 pm; G.
66.5 pm.
Description
Three to four spincs distributcd radially along a
semi-circle forrned by rwo to threc rows of arches
joining the spincs. Spincs taper gently distally,
but aiso towards the centre very rapidly.
RE MARKS
From the presence of arches between spines this
morphotype is comparable to the species descri-
bed by Li (1995). However, it differs in its smal-
1er size and the smallcr angle between adjacent
spincs. Only incomplète .specimens were encount-
ered in the yiclded matcrial.
Acknowledgements
Financial support from the Royal Society of
GEODIVERSITAS • 1999 • 21 (4)
633
Danelian T.
Edinburgh (B. P. Granr) is gratefully acknowled-
ged. The author is inosr indebted to E. K. N.
Clarksoii for having iatroduced him to the stu-
died outcrops and J. Floyd for discussion on the
geolog)' of the scudied areas. Many rhanks also ro
J. C. Aicchison and fi J. Noble for hcipfui coiti-
ments on the manuscript, S. Zatsepin for hclp
with translation of Russian liierature and M. Lee
for helpfui advice and assistance with SEM
images. This is a contribution to IGCP No. 410
“The Great Ordovician Biodiversification
Event”.
REFERENCES
Aitchison J. C. 1998. — A new Lovvrr Ordovician
(Arenigian) radiolarian fauna from the Ballantrac
Complex, Scorland. Scottish journal of Geolog' 34:
73-81.
Aitchison J. C. & Noble P. J. !997. — Early
Palaeozoic radiolarian biosrracigraphy. Inter-
Rad VIII, ParisIBiervillt, 8-!} Septembtr 1997.
Abstract volume'. 7.
Aitchison J. C., Flood P. G. i!c Malp.is J. 1998. —
Lowermost Ordovician (ha.sal Trenudoc) radiolar-
ians from the Little Port Complex, western
Newfoundland. Gcolo^ical Maçifzine 135 (3):
413-419.
Armstrong Fl. A., (Jarkson F- N. K. & Owcn A. W.
199(1. — A new Power Ordovician conodonr fau-
nule from the Northern Belr of the Southern
Uplands. Scottîsh Journal of Geolog 26: 47-52.
Armstrong FI. A.. Owcn A. W., Sennton C. T.,
Clarkson E. N. K. & Taylor C. M. 1996. —
Evolutitin of the Noi thern Bc|t» Southern Uplands:
implications for ihe Southern IJpl.mds conrroversy.
JourPialof the GeologkaI Society 153 ) 97-205.
Clarkson E- N- K., Fiatper D. À. T., Owcn A, W. &:
Tayli>r C. M. 1993. — Biggar: 180-191, in
McAdam A. 19., Clarkson E. N. K. & Sione P.
(eds), Scottish Borders Geology. Scottish Academie
Press, Edinburgh.-
Danelian T. & Clarkson E. N. K. 1998. —
Ordovician radiolaria from hedded chert.s of the
Southern Llplands. Scottish journal of Gcoloiçy
34(2): 133-134.
Deflanda- G. 1953. — Radiulaircs fossiles: 390-436, in
Grasse P. P. (ed.). Traite de Zoologie Anatomie,
Systérmtîique, Biologie^ Volume I (2). Masson. Paris.
Dong X., Knoil A. H. & l.ipps J. H. 1997. — Latc
Cambrian Radiolaria from Hunan journal
ofPnleon(ologyl\ (5l: 753-758.
Dumitrica P. 19*^0. — Crj'plocephalif and crypto-
thoracic Nassellaria in some Mesozoic deposits of
Romania. Revue Roumaine de Géologie, Géophysique
et Géographie, Série de Gétdogie 14 : 45-124.
Ehrenberg C. G. 1838. — Über die Bildung der
Rreidefclscn ünd des KreidemergcLs durch unsichr-
bare Organi.srncn. Abhandlungen der Koniglichen
Akaderme des Wissenschaften in Berlirr. 59-147.
— 1857. — Über die organischen Lcbcn.storincn în
unerw'artet grossen Fiefen des Mittelmeeres.
Koniglich Preiissisthc Akadcmic der Wissenschaften
zii Berlin: 538-570.
l'loyd J. D. 1996. — Lithostracigraphy of the
Ordovician rocks in the Southern Uplands;
Crawford Group. Moffai Shale Group. Leadhills
Supergroup. Transaettons of the Royal Society of
liatnhwgh: Earth Sciences 86: 153-165.
Fortey R. A. îR Holdsworrh B. K. 1971. — The
oldest known wcll preserved Radiolaria. Bollettirio
délia Sücicta Paleontvlôgiça Italiana I U: 35-41,
fortey R. A.» Flarpcr D. A. T., Ijigham ). K., Owcn
A. W. & Riisheon A. W A. 1995. — A révision of
Ordovician sc-iles and stages from the hisrorical
type area. Geolo^calMagttzine \}il: 15-30.
Goto H.. Umeda M. ik Ishiga If. 1992. — Late
Ordovician Radiolarians from the Fachlan Fold
Belr, Southea.stern Ausrralia. Memoirs ofthe Famlty
of Sciences, Shhmne Univcrsiiy 1G\ 145-170,
Flindc CF J. 1890a. — Speeimen.s and microseopic
sections ot Radiolarian Chert from the (Ordovician
strata (= l.landeilo-Catrailoc) of the Southern
Uplands of S'coiland. Journal of the Gcological
Society, Proceedin^: 111, 112.
— 1890b. — Noies on Radiolaria from rhe Lower
Palaeozoic rocks (Llandcilo-Caradoc) of the South
of Scotland. Annals and Magazine of Natural
Ilhtory. 40-59.
! lüldswoi'th B. K. 1969. — Namuriati Radiolaria of
(hc gciiuv Ceratoikhtum from Staffordshire and
19erby.sbire, England. Micropaleontology 15:
221-229.
Li H. 1995. — New gcncra and spccics of Middic
Ordovician Nassellaria and Albaillellaria from
Batjingsit Qüan mountains. China. Sdentia
Gcologica Sintca 4: 331 -346.
Lcggett j. K. 1978. — Eustacy and pelagk régimes in
the lapeius Océan during che Ordovician and
Silurian. Farth and Planciary Science Letters 41:
16.3-169.
— 1987. — The Southern Uplands as an accrc-tionary
prism: the importance of analogues m reconsrruc-
ring palaeogeograpliy. Journal of the Geological
Society^ London 144: '^37-752.
l.eggcrr J. K. tR ('a.scy D. M. 1982. — The Southern
Uplands Accrerionary l'risnt: Implications for
Controls on ^rructural development of subduction
complexes, m Wattkins J. S. &: Drake C. L. (eds),
Stutlies in Continental Margin Geology, Memoirs
of the American Association of Petroleum Ceologists
34: 377-393.
McAdam A. D, Clarkson E. N. K. & Stone P.
1993. — Scottish Borders Geology. Scottish
634
GEODIVERSITAS • 1999 • 21 (4)
Taxonomy of Ordovician Radiolaria from the S. Uplands
Academie Press, Edinburgh, 220 p.
Müllcr J. 1858. — Über die Thalassicollen,
Polycystinen uiid Acanthonietren des Mirtelmeeres.
Abhandliingen der Koniglichen Akademie des
Wissenschajien in Berlin: 1-62.
Nazarov B. B. 1975, — Lower and Middle Paleozoic
radiolarians of Kazakhstan (research methods, sys-
remaries, stratigraphie importance). Trndi GîN
Academy of Science, SSSR275: 1-203 [in Russian].
— 1988, — Pidaeozoic Radiolaria: Practical manualof
microfaiina of the USSR. Volume 2. Leningrad,
Nedra, 232 p. lin Russian].
Nazarov B. B. 6c Popov L. E. 1976. — Radiolarians,
Inarticulare Brachiopods and organisms of uncer-
tain systematic position from tue Middle Ordo¬
vician of Eastern Kazakhstan. Paleontological
Journal: 407-416.
— 1980. — Srrarigraphy and fauna of the siliccous-
carbonare sequence of the Ordovician of Kazakh¬
stan (Radiolarians and inarticulare brachiopods).
Trudi GIN Academy of Science, SSSR55\: 1-182 [in
Russian].
Nazarov B. B. & Ormiston A. R. 1984. — Tentative
System of Paleozoic Radiolaria: 64-87 [in Russian
with English Summary], in Petrushevskaya M.
(ed.), Morphology, Ecology and Evolution of
Radiolaria. Zoological Institute, Nauka, Leningrad.
— 1993. — New hiosrratigraphically important
Paleozoic Radiolaria of Eurasia and North America.
Micropaleontology Spécial Publication 6: 22-60.
Nichoison H. A. 1889. — Address on Recenr
Progress in Palaeontology as regards Invertebrate
Animais. Transactions of the Edinburgh Geological
Society 6: 53-69.
Noble P. J. 6c Aitchison J. C. 1995. — Status of
Ordovician and Silurian radiolarian studies in
North America, in Blome C. D. et ai (convenors),
Siliceous Microfossib, Paleontological Society Short
Courses xn Paleontology 8: 19-30.
Peach B. N. 6i Home J. 1899. —The Silurian Rocks
of Britain, Vol. 1, Scorland. Memoirs of the
Geological Snrvey ofthe United Kingdom, Edinburgh,
749 p.
Pessagno E. A. 6c Newporr R. L. 1972. —A tech¬
nique for extracting Radiolaria from radiolarian
cherts. Micropaleontology 18: 231-234.
Renz G. W 1990. — Ordovician Radiolaria from
Nevada atid Ncwfoundland. A comparison at fami-
ly level. Marine Micropaleontology 15: 393-402.
Riedci W. R. 1967. — Subclass Radiolaria: 291-298,
in Harland W. B. (ed.), The Fossil Record. Geo¬
logical Society of London, laandon.
Ruedemann R. & Wilson T. Y. 1936. — Eastern
New York Ordovician Cherts. Bulletin of the
Geological Society of America 47: 1535-1586.
Smith J. 1900. — Palaeozoic radiolarians, and radio¬
larian chen. Txansactions of the Geological Society of
Glasgow 11: 245-249.
Wang Y. 1993 — Middle Ordovician radiolarians from
the Pingiiang Formation of Gansu Province, China.
Mkropaleuntologif, Spécial Publication 6: 98-114.
Webby B. D. & Blom W. M. 1986 — The first wcll-
preserved radiolarians from the Ordovician of
AwsitAidi. Journal of Paleontology (yO (1): 145-157.
Submitted for publication on 29 January 1998;
accepted on 21 September Î998.
GEODIVERSITAS • 1999 • 21 (4)
635
Radioiarians as tracers for provenance of
gravels in Lower Cretaceous molasse
(Outer Zone of SW Japan)
Keisuke ISHIDA
Laboratory of Geology, Faculty of Integrated Arts and Sciences, University of Tokushima
1-1 Minamijosanjima, Tokushima 770-8502 (Japan)
ishidak@ias.tokushima-u.ac.jp
Ishida K. 1999. — Radioiarians as tracers for provenance of gravels in Lower Cretaceous
molasse (Outer Zone of SW Japan), in De Wever P. & Caulet J.-P. (eds), InterRad VIII,
Paris/Bierville 8-13 septembre 1997, Geodiversitas 2^ (4) : 637«656.
KEYWORDS
Provenance,
conglomerarc,
molasse,
radiolarian dacing,
Jurassic accretionary complcx,
Cretaceous,
SW Japan.
ABSTRACT
This paper discusscs the results and the recent .status of the study by radiolar-
ians as tracers for erosional events, especially for those of Jurassic and pre-
Jurassic accretionary complexes in the Outer Zone of SW Japan. As a test
case ro darifÿ the provenance of radiolarian-bearing gravels in conglomérâtes,
the author reviewed the work previously donc to trace the source rocks
within oceanic-plate stratigraphy successions from monomictic chert-pebble
conglomérâtes of the Lower Cretaceous Ryoseki-Monobegawa group. The
group is a molasse rypical of paralic sedimenrary faciès in the Outer Zone of
SW Japan.
MOTS CLÉS
Provenance,
conglomérat,
molasse,
datation par radiolaires,
complexes
d’accrétion jurassiques,
Crétacé.
SW Japon.
RÉSUMÉ
De Vutilisation des radiolaires comme indicateurs de provenance des graviers
dans les molasses crétacées inférieures (zones externes du SWJapon).
Le présent article discute des implications qu'a l utilisation récente des radio¬
laires comme indicateurs d'événements érosifs, en paniculier de ceux de com¬
plexes d’accrérion jurassiques et anté-juras.siqucs au SW Japon. Comme
étude de cas pour éclairer la provenance de graviers à radiolaires des ct)ng!o-
merats, l’aurcur cffcccuc une revue des séries stratigraphiques synrhériques à
partir des conglomérats monogéniques à galets de clierts du groupe Ryoseki-
Monobegawa du Crétacé inférieur. Ce groupe molassique est de faciès .sédi-
mentaire paralique typique des zones externes du SW Japon.
GEODIVERSITAS • 1999 • 21 (4)
637
Ishida K.
INTRODUCTION
In the last two décades, radiolarian researchers in
Japan made an effort ro clarify the Permian,
Triassic and Jurassic biostratigraphy, and estab-
lished many radiolarian biostratigraphic zones
(e.g., Lsliiga D)H6. 1^)90; Matsuoka Yao 19S6;
Yao 1990; Matsuoka 1995 eic.) wiihin accre-
tionary complexes (AC; ’laira et tiL 1981). Thcy
analyzed bed by bed the faunas froni blocks o(
pclagic sédiments in mélangés and oli.stosrromes.
It contributed to reconstrucr the oceanic plate
stratigraphy {OP5) from thcse lectonically dis-
rupted -sedimentary rocks (e.g., Marsuoka 1984;
Ishida 1987; Hada & Kurinioto 1990; Ksozaki
1997a), as well a.s to di.stingiiish géologie uniis
and to clarify tlieir spatial distribution (Mizutani
1995).
Radiolarians arc important indexes lor the
Paleozoic and rhe Mesozoic. Thcir size averages
10'^ mm. They are therefore .small enough to be
reworked as an inclusion into clasts of various
size and even in sand grains. This property is
effective to analyse erosional events. Radiolarians
are available lor identifying source rocks ol clas-
tics.
The “clastic appruach’^ of radiolarian daring
appears particularly appropriate ior cheri-bearing
rerrane analysis of the Canadian Cordillera
(Cordey 1992). In case of California Cousi
Ranges, analysis of radiolarian chcrt-pcbbics is
more effective than sandstonc component not
only for the provcnancial scudy but also for clari-
fying the tectonic movement along the transform
fault (Seidcrs & Blome 1984» 1988).
This paper dcals with erosional events following
the setting ofaccretionary complexes. This is one
test case in the reconstruction of OPS from the
gravels and clasts in the monomktic conglomé¬
râtes. In this case, radiolarians in gravels are used
as tracen; for erosional events. This type of test
will become a greac help to scudy the orogenic
and/or erosional events in the marginal area of
the Late Mesozoic East Asian continent.
GEOLOGY OF SW JAPAN
With respect of the continuity of the pre-
Neogene orogenic unies and ACs> ac Icast the
Southwest side of the Tanakura Tectonic Line is
regarded as SW Japan. The post-Neogene geolog-
ical province of SW Japan is subdivided into the
Inncr Zone on the continental sidc and the
Outer Zone on the trench side by the Médian
Tectonic Line (MTL). Based on a palcobiogeo-
graphical study, ihe left-latcral slip movement
along the M EL is legardcd to rcach about
1 500 km after the Early Cretaceous tlme
(Tazawa 1993). Concerning ihe pre-Neogene
geology, nappes and klippes of ihe Permo-
Triassic orogenic unies and Jurassic ACs are dis-
tributed in the Iriner and ihe C)urer zones of SW
japan (l'ig, 1). The Inner Zone of SW Japan is
composed of the Hida, Marginal Hida, Akiyoshî,
Sangun, Mai/.uru, UIrra-’lamba. and the Mino-
Eainba bclts (rom the north lo the south.
The Hida Bcit is mainly composed of gneisses
with intrasion of Permian-Jurassie granités. The
d’etori gruup of the Middic Juras.sic-Lûwer
Cretaceous shallow-murine and non-marine for¬
mations unconformably overlics tliese gneisses'
and granités. The Hida Bêlt is siruatccl in the
mosT condncnial side of SW Japan, and is sup-
posed to thrust on the Akiyoshi, Sangun,
Maizuru and ihe Ultra-Tamba beks.
The Marginal Hida Bell is situatod between the
Hida and the Mino- lamba bclis. It is supposcd
to thru-st upon ihe Mino-'J'airiba Belts together
with the Hida Belt. 'Ehc Marginal Hida Belt is
composed of Paleozoic compicx with Triassic for¬
mation chat are unconformably overlain by rhe
Lower-Middlc Jurassic Kuruma group. The
Paleozoic complexes appear to be serpentinite
mélangés chat include blocks of glaucophane
schist.s, amphihnitrcs, F.arly-Late Paleozoic clastic
sédiments with limestones.
The Akiyoshi Belt is composed of rhe Middlc-
Late Paleozoic ACs and the Mesozoic cover for¬
mations, The Late Paleozoic ACs connain large
blocks of CarboniferoLis and Permian limestones
with basales as well as blocks of Permian cherts,
mudstoncs and sandstones. The Mesozoic shal-
low-inarinc and brackish cover formarions are
the Triassic Natiwa group and the Jurassic
Yamaoku formations.
rhe Sangun Bell is mainly composed of 180-
230 Ma glaucophane schists and slates that are
638
GEODIVERSITAS • 1999 • 21 (4)
Radiolarians as tracers for provenance of gravels in Lower Cretaceous molasse (Outer Zone of SW Japan)
Fig. 1. — Zonal distribution of pre-Neogene orogenic units and accretionary complexes in SW Japan. A, Hida, B, Marginal HIda; C,
Akiyoshi; D, Sangun; E. Malzuru; F, Ultra-Tamba; G. Mino-Tamba belts of the Inner Zone; H, Sambagawa-Mikabu; l. North Chichibii;
J. Kurosegawa; K, Soulti Chichibu belts; U, Sbirnanto Superbelts of the Outer Zone. MTL. Médian Tectonic Une; TTL, Tanakura
Tectonic Une,
originated from mudstoncs, sandscoiies, and d’he Mino-'Jamba Belt is composed mainly of
basakîi with chcrcs of the Latc Permian ACs. the Early Jurassic-earliest Cretaceous ÂCs rhat
*rhc Maizuru Belt is oomposed of Paleozoic basic are intruded by the Late Cretaceous Ryoke grau-
rocks (Yaküno ophiolite) and Middie-Late ucs. ’l’hey are unconformably overlain by rhe
Permian slope basin deposits (Maizuru group) Latc Cretaceous volcano-clastic formations
thar are unconformably overlain by the Lower- (Nohi rhyolites) and ihe Paleogene non-marine
Middie Triassic Yakiino group. conglomérâtes. The Larly Jurassic-earliest
The Ultra-Tamba Belt is subdivided inco chree Cretaceous ACs are subdividcd into sevcral tec-
nappes. The highest nappe of the UT3 ûs com- tonie unirs. They are composed of Permian^
poscd of Upper Permian mudstoncs and green- Middie-Upper Triassic and Lower-Middle
srones with cherts and Upper Carbonilcrous Jurassic cherts with Early Triassic siliceous clay-
limestones. Intermédiare nappe ol rhe UT2 is stonc.s, Jurassic-earliest Cretaceous mudstonçs
composed of Upper Permian siliccous mudstone.s and turbidites. These ACs also contain blocks of
with Lowcr-Middle Permian bedded cherts. The Upper Paleozoic limestones and basalric green-
lowcst nappe ot the UTl is composed of Middle- stories.
Late Permian mudstoncs and grceni.sh sand- The Durer Zone of SW Japan is composed of
stoncs. l'he Permian formations of the UTl are the Sambagawa-Mikabu, Norrh Chichibu,
unconformably overlain by the non-marîne Kurosegawa, South Cluchibu belts and the
Lower Cretaceous Sasayama group. Shimanto Superbelt from the north to the south.
GEODIVERSITAS • 1999 • 21 (4)
Ishida K.
The Sambdgawa-Mikabu Bclc is composcd of the
Sambagawa cryscallinc schists and thc Mikabu
greensconcs. fhis belt is supposed to consisc of
the Early jurassic-Early Crctaceoiis ACs.
Multiple nappe structure is churucteristic in this
bcit. The Sambagawa crystalline schists arc com-
posed of basic and pcliiic schists wiih quartz and
psammitic schists. Somc of the inrercalaccd calcar-
eous schists in thc basic schists arc oiiginaced
from thc Upper Triassic limestones (Suyari et al
1980a). The Mikabu greenstones are composcd
of low-metamorphosed gabbros, dolerites, pillow
basalts and ba-saltic hyaloclastites witb Upper
Jurassic cherts (Faure et al 1991), mudvsrones
and Upper Triassic limestones, They experieneed
H-P/L-T metamorphfsm during thc Cretaccous.
Metamorphic grade is higher in the northern
nappes.
The geometP}' of rhe Kurosegawa Belt with res¬
pect to the Jurassic AC is not yet settled siiffi-
cicntly However, alter the Early C]rctaceous
time, the non-rnetamorpliosed jurassic AC and
the pre-jurassk AC ot rhe Outer Zone of SW
japan arc distrlbuted in a tcrranc that is called
the Chichibu Supertei rane. The Chichibu
Supcrtcrranc is subdivided into rhe pre-jutassic
AC of thc Kurosegawa Beir, and the jurassic AC
of the Norrh Chichibu and the South Chichibu
bclts.
The Kurosegawa Belt is situated in thc central
part of thc Chichibu Superterrane, and is com-
posed ot rhe Paleozoic AC that is unLoniormably
overlain by thc Mesozoie cover formations. This
belt is subdivided into rhe iioith and the soiith
units. In the south unit, pre-jurassic AC is com-
posed of Pefinian and Middle Paleozoic forma¬
tions that are unconformably overlain by shaJIow
marine and paralic formations of the Middle-
Upper d'riassic Daonella-Monnth beds, Middle-
Upper jurassic Torinosu group and the Lower
Cretaccous Takegatani group. The Permian for¬
mations arc mélangés and slope basin faciès. The
Middle Paleozoic fromations appears witli ser-
pentinites as lenticular bodies ihar are composed
of gneisses. gmnite.s and ihe Silurian limestones.
The nonh unit is composed of the Permian AC
that is unconformably overlain by thc Lower
Crecaceous paralic formations of the Ryoseki-
Monobegawa group. The north unit lacks the
Middle Paleozoic formations and thc Triassic-
Juiussic cover formation.s.
l’he North Chichibu Belt (NCR) is distributed
in ihc north sidc of thc Chichibu Superterrane.
rhe NCB is composed ot laiesi Triassic-Middle
Jurassic ACs that con.sist of Permian, Middlc-
Upper Triassic and Lower Jurassic cherts with the
Early driassic siliccous claystones, Lower-Middie
Jurassic mudstones and turbiditcs. I hcsc ACs
also contain blocks of the Upper Paleozoic lime-
stones and basaltic greenstones.
The South Chichibu Belt (SCB) is composed of
Middle Jura.ssic-earliest Crefaceous ACs
(Nakagawa group) and the Late Jurassic-Early
Cretaceous slope basin formations of the
Torinosu group. The Middle Jurassic-earJiest
Cretaceous ACs arc subdivided into severai tec-
ronic unies that hâve the acenetion polarity reju-
venating from the norrh to the south- They arc
composed of Permian, Middie-Upper Triassic
and l.ower-Middle jurassic cherts with ihe Early
rriassit siliccou.s ckiy.stone.s, Middle Jura.ssic-car-
licst Cretaceous mudstones and turbidltc sand-
stoncs. Tlicse ACs also contain Upper Paleozoic
limestones and basaltic greenstones.
The Shimanro Superbelt is subdivided into thc
North Shimanto Belt (NSB) and the South
Shinianto Belt (SSB). The NSB is composed of
latc Early-Late Cretaceous ACs and slope basin
formations. Tliesc ACs contain thc Lower-Upper
Cretaceous cherts, and rhe Iziihara and Hayama
slope basin formations contain olistolichs ot the
Triassic limestones from the SCB. The SSB is
composed of the Palcogene-Miocene ACs and
ihe slope-ba.sin formations.
GEOLOGICAL SETTING
A nappe model of the SW Japan was proposed
when the reeem radiolarian Works in Japan has
sianed (Faure 1983a, b). At first, the Kurosegawa
Rcir was proposed lo be a lower unit as a rem¬
uant üf the subducted microcontineni (Faure
1985; Caridroit &: Charvet 1986). In compari-
son wjth the gcology of the Innci Zone of SW
Japan, the Kurosegawa Belt Wiis proposed to be a
klippe above the Chichibu Klippc (Isozaki et al
1992). According to Suzuki & Itaya (1994), the
640
GEODIVERSITAS • 1999 • 21 (4)
Radiolarians as traccrs for provenance of gravels in Lower Cretaceous molasse (Oucer Zone of SW Japan)
34''N
Fig. 2. — Geologicâl outline map of the Chichibu Superterrane. 1^ Sotoizumi group (Upper Cretaceous slope basin sédiments);
2, Ryoseki-Monobegawa group (Lower Cretaceous paralic sédiments): 3, Takegatani group (Lower Cretaceous shallow marine sédi¬
ments); 4, north Unit of the Kurosegawa Belt (Permian accretionary complex); 5. south unit of the Kurosegawa Bell (Permian accre-
tionary complex with Middie Paieozolc blocks and Triassic-Jurassic cover formations): 6. North Chichibu Belt (Lower-Middle Jurassic
accretionary complex); 7. South Chichibu Bell (Middie Jurassic-Early Cretaceous accretionary complex).
K-Ar age.s of ihe pre-Jurassic AC in tlic
Kurosegawa Dclt arc Laie Triassic to Early
Jurassic (194-225 Ma). TKe K-Ar âges of the
jurassic AC in the North Chichibu Belt are
Mitldle jurassic ro earliest Cretaceous.
The Ryoseki-Monobegawa group in the Ou ter
Zone of SW japan is characterisiit o( paralic
tacies of the Early Cretaceous âge (Tishiro 1986;
Tashiro &c Kozai 1991; Koziiî 1996; Ishida et a/.
1992, 1996). The group unconlorniably overlies
pre-jurassic (Permian) mélangés of the nortlr unit
of the Kurosegawa Bell (Ishîda et///. 1992). The
Kurosegawa Bell i.s subdivJded into ihc north
and the south umts. They are sicuaccd berween
the jurassic AC of chc North and the South
Chichibu belts (Fig. 2). In the south unir, pre-
jurassic AC wirh blocks of gneisses, granités and
Silurian Ümescones is unconformably overlain by
the Triassic shallow-marine formations (Sakashu
unconfoimicy: Icliikawa et///. 1953). Thus, rhin
shallow-nuuine TriuSsic and jura.ssic tormatioas
overlie the Paleozoic complexes in the South
Kurosegawa unit, whercas ihey never dlsiributc
in the north unit. The Ryoseki-Monobegawa
group and the équivalent Takegatani group
unconformably averlii: boih uniis of the
Kurosegawa Belt. The group is composed of
brackish conglomérâtes and shallow-marine sédi¬
ments. rhey yield auiochthonous Barrcmian
imdlusks (Mai.sukawa & Eio 1987).
The Lower Cretaceous formations of ihc
Ryoseki-Monobegawa group are composed
mainly of conglomerates> sandstones and mud-
srones with seams of ciiffs, limestones and coals
(Fig. 3). In F.asr Slukokii, the group is .subdi-
vided into lhe Tatsukawa, Lower and Upper
Manoura, Moji and Fujikawa formations (Ishida
et///. 1992, 1996). These formations yield
GEODIVERSITAS • 1999 • 21 {4)
641
LOWER FORMATIONS OF THE RYOSEKI-MONOBEGAWA GROUP
Ishida K.
A
reddtsh cgi.
Kfl chert-pebbte cgi.
pebbly sandstone
□ massive sanstone
parallel-bedded sdst.
ait. sdstVmudst.
pelitic beds
calcareous beds
lîSSÎI coal seam
luff seam
pre-Cretaceous basement
O radiolarians (autochthonous)
9 radiolarians (reworked)
O foraminifers
@1 ammonites
A trigoniids
C? marine bivalves
Ochiai
[=□
Hanoura
V brackfsh bivalves
if echinoids
4» iand plants
Il trace fossils
CO wave ripples
A-F sampling horizons
100m
0
Fig. 3. — Stratigraphie columns of the lower formations of the Ryoseki-Monobegawa group in East Shikoku.
642
GEODIVERSITAS • 1999 • 21 (4)
Radiolarians as tracers for provenance of gravels in Lower Cretaceous molasse (Outer Zone of SW Japan)
Fujikawa Fm
Hoji Fm
Base Hoji Fm
Upper Hanoura Fm
Base Up Hanoura Fm
Lower Hanoura Fm
Base L Hanoura Fm
Tatsukawa Fm
Base Tatsukawa Fm
Q quartz vein
e granité
a quartz porphyry
■ serpentinite
a greenslone
■ limestone
D sandslone
s mudstone
□ acidic tuffite
(D chert
Fig. 4. — Composition and vertical change of gravels in the Rvoseki-Monobegawa group, East Shikoku.
autochthonoiis jmnioniies, bivalves, echinoids,
foraminifers and radiolarians wilh alloclichonoiis
plants, non-marine bivalves and dinosaur teeth.
They indicate Baircmian to Albian âges. The
radiolarian zonation of the Ryoseki-Monobegawa
group is Mibdivided irito the At^hdeodictyomitm
pseudoicdlaris (Barremian), Stichomitra ionnnunis
(upper Aptian) and Pseuchdutyo>nitm pentaco-
laensis (middle Albianj assemblage zones in
ascending order (Ishida àc Hashinioto 199Ta).
'These zones arc calibrated by co-occurring
ammonites. These formations form sedimeniary
cycles chat are characterized hy üpward thinning
and fming sequences under the cffcct of trans¬
gressive events. CTowth of the dcitaic fan is syn-
chronoLis with the eusraric change. The
conglomérâtes are more than 100 m thick, and
are frequcntly intercalated in rnany horizons
(Fig. 3).
Characteristics of the conglomérâtes, especially
dic size, roundness, lithology and soning of the
gravels differ in horizons. Basal conglomerate of
the group is characterized by basaltic greenstonc
gravels and serpentinire blocks that arc interpre-
ted as the resuit of débris flows. Round gravels of
quartz-porphyry and fine granité inctcase in the
upper horizons, especially above the Upper
Hanoura formations. In the upper part of the
Tatsukawa formation and the Lower Hanoura
formation, there are many chert-pcbblc conglom¬
erate beds of monomictic origin (Fig. 4). The
chert-pcbble conglomérâtes are composed of
round chert pebbles of a few cm in diamerer that
occupy more than 90% of the gravels (Fig. 4).
They are well sorted. and clast-supporced. For
this study, ihc author studied these monomictic
chert-pebble conglomérâtes with spécial respect
to recoiisiruct the provcnancial OPS, and exrrac-
ted radiolarians from chert pebbles and mud¬
stone clasts.
PREPARATION AND PROCESSING OF
.SAMPLES
This study needs some information about OPS
of sedimentary basements and/or terranes of ori¬
gin (rom radiolarian-bearing gravels in mono¬
mictic conglomérâtes. For this purpose, it is
nccessary to clatify the relarionship betweeii the
lithology ol gravels and thdr radiolarian âges.
Paxticularly, reconstrutting the ÜPS of terranes
from gravels in monomictic conglomérâtes
requires to be able lo disringui.sh riic lithology of
graveU, wlicther they are of pelagic or continen¬
tal origin, as well as to déterminé their radio-
GEODIVERSITAS • 1999 • 21 (4)
643
Ishida K.
Fig. 5. — Mlddle-Laîc Tiiaiîsic and nartlGSl Jurasse radiolnrian» from the nhert pebbles of the Ryoseki-Monobegawa groüp »n East
Shikoku. A. Tfisa^iX'^fnpê lont^icppimlis Ko/iir Ô Mosilof; B, Atinulotriassocampe camp,tnifis Knrur A Mostic/-; C. O, Trt.isaocfimp9
aff. scalaris DiirTvitnca, Kojrur & Mûutitîf; E. C5(£7/ tucUs De WeveT; F, Pamhâuum simplom Yan; G. Corurn ,spPùiO)i{irn Rlooie;
H, Pararucsttcyrtium medlotassanlcum Kû 2 ih R Mnstlor I. HinfledOn:.nst Ntipftwtnihi Suijiyania; J. Tpeoctjty'^ 6p. A ol Nakaecko &
Nishimura. K. Harmadla reticulatà Oumîti-ca, Ko^uf & MosUef; t. Tibofpfte cochle&ta (Naka&eKo 5 Nichimura); M. Bvturmlfa robusta
Dumitrica. Ky^ui A MosUer N, BpUngium rrKintrefd} rcbusfum Kozur & Mostler O. BptfngfUfn nahasffkol Koîiir & Mo&tler;
P. Eptingiumd. man/rec* Uumiirica; Q. Pseudoslytosphaera spinuloRum (N.ikaseko & NÆliimura), R PsaydoHtyhtsfthatttta wp, C of
Ko)fnia & Minutant, 1^87, S, Psoudosiylosphaot'n japonicft (NaKaseko /V Nishifiui^a): 7, Of^pnodoco sarisa De Wevor; U, Jnlonche
japonica Nakaseko & Nishimura; V, Sarla (?) exîerna Blome; W, Acanthocircus vigrassi Blome. Scale bars: 100 pm; a, W; b, H, L-P,
R-V;c. A-G,J. K. Q; d, I.
644
GEODIVERSITAS • 1999 • 21 (4)
Radiolarians as tracers for provenance of gravels in Lower Creraceous molasse (Outer Zone of SW Japan)
larian âge. In the marginal area of Easi Asia and
Japanese Islands, Jurassic and prc-Jurassic ACs
originale from OPS that arc mainly composed of
cherc-clastic séquences. Iri these cherr-clastic
scquences> sédiments sçart irom pielagit bedded
cherts, and they gradually change upwards
towards ahernating beds of curbidire sandstones
and mud5tonc.s (irench-fill turbidite) by way of
hemipelagic slliccous raudstonc beds.
Rcgardiiig the conglomerares in the Lower
Cretaccous Ryoseki-Monobegawa group, the foL
lowing mechod of processing is used. If gravels
are larger than 20 mm in diameter, and it is easy
to isolate them from the matrix, gravels of cherts
and mudstones are chemiediy processed separate-
ly. Tf gravels are roo .small (Icss than 20 mm in
diameter) and difficult tu isolate sepaaately from
the hard matrix, sJabs ot conglomérâtes about
5 mm thick arc made. Thcn, gravels arc eut oft
using pliers. Altcr that. che fragments of pebbles
are classifed lid>ologicaily into cherts or inud-
stones. In rhe Rvoscki-Monobcgawa group, the
matrices of conglomérâtes arc asually composed
of sandstones. They contain not only cherc clasts
but also mud-stonc grains that arc Icss rhan 2 mm
in diameter. Jn the sttidy, the matrices of con¬
glomérâtes are separated from the gravels beiore
Processing. Tbis method shows that rhe matrices
yield quite diflerent kind of radiolarians ahun-
dantly compared with those Irom che thert grav¬
els. The samples were processed by 3-7% diluted
H F for about 12 hours. The process was repeaied
several times.
RADIOLARJAN AGE OF GRAVELS AND
CLASTS
The chert gravels of chert-pebble conglomérâtes
of the Ryoseki-Monobegawa group yield Middle-
Late Triassic, and earlicst Jurassie radiolarians
(Fig. 5). Among rhem, Hindedorcm hnldsworthu
EpUngium nakasekou E. cf. maiijirdi, Triasso-
campe aff. icalaris, Armuhiriassocampe campanilis,
Trilonche japonicUy Pseudostylosphaera japnnkay
Beturiella robusta, Pscudostylosphaem apinulomm^
P. sp C of Kojima Mizutani (1987),
Triassocampe longtcephalis, Pararuesticyrtium
mediofassan 'îcumy Hozumadia reticulatay Tiborella
cochlema are characteristic of the Middie Triassic.
Hindedorcus holdsworthi was reported from the
chert beds of the Kinkazan, Mino-Tamba Belc
(Sugiyama 1992). Thi.s species is chatactcristic in
Hozmadin gifuemis assemblage of the caily
Anisian âge. Epùngium ?iiikasekni was reported
from the Pameeratîtes ty-inodouis zone (lllyrian) in
che Balaton Hills, Hungary fKozur &r Mostler
1994). Epîtngiam cf. mayjfirdi i.s clo.sely adated
with the same speeies. that wa.s reptïrtcd fmm rhe
bedded chert sequences in the Inuyama area of
the Mino-Tamba Relt. The species occiir.s with
Triassocampe dewtveri and Ladiniati conodoncs
(Ya.o 1982). Truissocampe Âi. co-occurs
with Ani.sian conodonts from the chcrc beds of
the South Chichibu Bclt (Ishida 1984).
Annulotriasuicanipe campanilh was reported from
the Fassan beds of the Balaton Hills, Hungary
(Kozur & Mosrlcj 1994). Trilonche japonicû co-
occurred with Triassocampe deweveri in the chert
of the South Chichibu Bclt (Nakaseko &
Nishimura 1979). Pseudostylo-sphaera japoriica
was dcsciibcd from the chc/t beds of the South
Chichibu Beir (Nakaseko Ssc Nishimura 1979).
This spccies cu-occurs with Neogondolella httsla-
chensis in rhe lare Anisian-early I^adinian chert
beds of the Sikhote-Alin and Sakhalin (Brag'm
1991). Anoiher reports on occurrences are from
bedded chens in the Mino-Tamba Be-li (Yao
1982) and the Nad;uihada, NE China (Kojima
ik Mizurani 1987). Bctunella robnsta was report¬
ed from rhe ‘'"Nodosus bed" about ihe Anisian/
Ladinian boundary in the .Southern Dolomiten
Alps (Dumitrica étal. 1980). Pseudosiylosphaera
spiriulasum was reported from chert beds of the
South Chichibu Belc (Nakaseko & Nishimura
1979), and from the upper Anisian-lower
Ladinian chert beds in rhe norrhernmost
Sakhalin with Pseudostylosphavra japonica (Rragin
1991) Pseudostyloshaera sp. C of Kojima
Mizutani (1987) has slightiy rwisted polar spines.
This spccies was reported from the latc Anisian
to Ladinian bedded chert in the Nadanhada
Range. Triassocampe longtcephalis îs described in
tlie early Ladinian (middie Fassanian) beds of the
Vincentinian Alps, Italy (Kozur ÔC Mostler
1994). Pararuesticyrtium mediofassnnicum is
known in the Ladinocampe multiperforata zone of
the middie Fassanian beds in the Vincentinian
GEODIVERSITAS • 1999 • 21 (4)
645
Ishida K.
Fig. 6. — Photomicrographs showing clasts (sand sizes) oî mudstones (dark) and cherts (light) in the matrix part of the chert-pebble
conglomérâtes. These mudstone clasts contain many radiolarian tests (small round circles). A-D. Psammitic matrices of the chert-
pebble conglomérâtes in the Ryoseki-Monobegawa group. East Shikûku Scate bars: 1 mm.
Alps, Italy (Kozur 6c Mostler 1904). Hoztimadia
reticulata is reporccd from chc lowcr Ladinian
beds in the Southern Alps (Diimitrica et aL
1980). The species is characreristic in Spofigo-
silîcarmigcr tUtlicus zone oF the lowcr Fassanian
(Kozur Si Mostler 1994). Tihorell-a cochleatn i.s
reported with Truimcampe dewiiueri From chert
in Inuyama, Mino-lamba Bck (Nakaseko &
Nishimura 1979).
The Upper Triassic radiolarians such as
Capnodoce sarisa, Theocoiys sp. A, Snrla (?) exter^
na, AcanthocircHS vigrassi and Corum specwsum
are extractcd from chcri pcbblcs. Capnodoce sari-
sa is described frorn the Uppet Triassic forma¬
tions in Turkey and S'icily (De Wever et al.
1979). This spccies occurs with Theocorys sp. A
and Carnian conodonts From the gray cherc in
Shimo-aso ol rhe Mino-Taniba Belr (Nakaseko
& Nishimura 1979). Sarla (?) externa is reported
From the upper Carnian (?)-middlc Norian beds
fn Mid-Easi Oregon (Blome 1983). Avatitho-
circtis vigrassi was reported from the Triassic
(upper Carnian (?)-middle Norian) Obin mud¬
stone in East Oregon (Blome 1984). Corum spe-
ciasum is described from the Rail Cabin
mudstone (lower-midJle Norian) in Oregon
(Blome 1984). Paleosaturnalis sp. are extracted
with Sarla (?) exteruit from a chert pcbbic in che
conglonierate.
ParahsHum sirnplum and Gigi Jusris of the earliest
Jurassic materiai.s are ai.so found in the other
chert gravcls. Paralmmm nmplmn is the index
specics of the P. sirnphon zone (Hori 1990). This
specics is widely reported From the bedded chert
in Mino-Tamba, Ashio, Notth CFiichibu and
South Chichibu bcits (Yao 1982; Suyari et al.
1982; Ishida 1983; Sashida 1988). fiislts is
reported from the calcareous chert in the lower
646
GEODIVERSITAS • 1999 • 21 (4)
Radiolarians as tracers for provenance of gravels in Lower Crctaceous molasse (Outer Zone of SW Japan)
Fig. 7. — Early. Middie and Late Jurassic radiolarians (rorti ihe small clasts and pebbles of mudslones in the chart-pebble conglom¬
érâtes of the Ryoseki-Monobegawa group in East Shikoku A. Parahsuum ovale Hori & Yao: B, Parahsuum (?) grande Mon & Yao;
C, Dictyomitralla kamoensts Muutani & KIdo; D, Ristola dhimenaensis (Baumgartner); E. F, Archaeodlctyomitra suzukif Alta;
G. Tricolocapsa fusiformis Yao; H. Tricolocapsa atf fusiformis Yao; I K, Tricolocapsa plicarum Yao; L» Tricolocapsa cf. ruesft Tan;
M, Stichocapsa japontca Yao; N, Tricolocapsa ci. parvtpora Tan of Yao, O, Theocapsomma cordis Kocher, P, Q. Stylocapsa oblon-
gula Kocher; R, Eucyrtidiellum unumaensis (Yao); S, Eucyrtidiellum nodosum Wakita. Scale bars: 100 pm; a. A. D; b, B. C, E-G, l-L;
c, H, M-S.
GEODIVERSITAS • 1999 • 21 (4)
647
Ishida K.
Fi6. 8. — MicWle-Late Jurassic and earliest Cretaceous radiolarians from the small clasls and pebbles of mudstones in the chert-
pebble conglomérâtes of the Ryoseki-Monobegawa group in East Shikoku A, B. Pseudodlctyomitra primiüva Yao; C, Sethocapsa
pseudouterculus Ai\a\ D, EucyiHdiellum pyramis (Aita); E, Sethocapsa horokanaiensis Kawabata; F, Hsuum maxwelli Pessagno; G,
H, Stichocapsa naradaniensis Matsuoka; I. Proîunuma japonicus Matsuoka & Yao;- J. Cingulotums carpatica Dumitrica, K, L,
Tricolocapsa conexa Matsuoka; M, Stylocapsa lacrimaris Matsuoka; N. Stylocapsa (?) spiralis Matsuoka; O, Gongylothorax favosus
Dumitrica: P. Stichocapsa robsta Matsuoka. Scale bars: 100 pm; a. A-J, L, M. P: b, K, N, O.
648
GEODIVERSITAS • 1999 • 21 (4)
Radiolarians as tracers for provenance of gravels in Lower Cretaceous molasse (Outer Zone of SW Japan)
Liassic (Sinemurian'?Plicnsbachian) Bndva zone
in tlie Dinarides, Monténégro (GorLcan 1994).
The related species co-occur witli P. simplum
from cherr in thc Kdtsuy.ïmj Section of ilie
MinO'Tamba Bell (Hori 1990).
Matrices of the chen-pebbic conglomcr.ites
contain many small clasts of mudstoncs as wcll as
small clasts of chcrts. l'hcir dianictcrs arc Icss
than 2 mm. Among these mudstonc clasts, somc
arc conipo.scd ot micaccous black mudstoncs.
The othcis arc siliccoiis mudstoncs and tuffa-
ceoiis oncs that arc usually dark gray or black
colored. Thcy commonly contain many radiolar¬
ians (Fig. 6). These small clasts of mudstoncs
and some mudstonc pcbbles in the chert-pebblc
conglomérâtes yield thc Early Jurassic, Middle-
early Late Jurassic, Latc Jurassic, atid tfie earliesi
Cretaceous radiolarians (Figs. 7^ 8). Among
them. the Eatly Jurassic materials are Parahsuum
ovale and Parahsuum (?) geaiuie, Parahuum ovale
hus irs range in ihe Pnratmium ^ioiplum zone.
This species is nearly the same age as P. simplum.
but appeaoi later in the bedded chert séquences
of thc Mino-J’amba Bclc (Hori 1990). This spe¬
cies is also reported from che black mudstonc of
the North Chichibu Belt in Kytishu, SW japar»
(Hori 1990; Miyamoto &c Kuwazuru 1993).
Parahsuum (?) g^aude is the index species of the
zone that belongs to chc Upper Lower Jurassic
(Hori 1990). The Middle-early Lace Jurassic
materials arc Tricolocapsa pliiarunu T fi4siformis,
T, atf. fusiformisy X conexa^ T parvipora, T. cf.
nmii, Gongylofhorax favosusy EucyrtidicllufN uuu-
macusisy H. nodosunu Theocapsomma cordi-s,
Diayomiîrella kamoensis, Archacodictyomiira cf.
sHzukiiy SPfchocapsa japoutcay S. robustfU
Stylocapsa oblongnla^ Hsuufn maxwclli^ Ristola
dhimenaeusis. Tiicy are reported from the
Tricolocapsa pücantm zone and Tricolocapsa conexa
zone or Stylocapsa (?) spiralis zone of Matsuoka
(1995), and/or Tricolocapsa tetraga)7a intcrval
zone (IZ; Callovian)-7v?reWi;j/e/A2 bipposidericiu
zone (Oxfordian) of Aita (1987). For example,
Tricolocapsa conexa ranges from thc Tricolocapsa
tetragona VA to thc Porananella bipposidericus
zone ol Aita (1987). Il also ranges from the
Tricolocapsa conexa zone (upper Bathonian) to
the Stylocapsa (?) spiralis zone (.Oxfordian) of
Matsuoka (1995). This species is regarded to
indicate thc UA zones 6-15 of Gorican (1994)
and thc U A zones 4-7 of IncerRad J-C WG
(1995). These zones arc correlated with the late
Bajocian to Bathonian or Callovian. Tricolocapsa
parvipord has irs range In thc Tricolocapsa fetrago^
na VL-Amphipyndax isunoensis VL of Aita (1987).
This species is regarded vo indicate the UA zones
3-5 of Bauniganncr (1984), and the UA zones
6-7 (IntcrRad J-C WG 1995) that arc correlated
with the latc Middle-early I..'iic Jurassic (middie
Bathonian to Callovian or early Clxhïrdiarl).
dyiguloturris carpatica^ Stylocapsa lacrimariSy
Stybfcapsa (?) sphnlisy Siichocapsa naradaniefisiSy
Proîunuma japonicus arc charactcriscic of thc
Stylocapsa (?) spiralis lonc-Cinguloiurris carpalka
zone (l.üwer-iniddle Upper Jurassic) oi Matsuoka
Yao (1985), and the Styloutpsa (?) spiralis zonc-
Hsuum maxiifelli zone (upperniost Callovian-
Kimmcridgian) uf Matsuoka (1995). T'hc latcst
Jurassic and earliest Cretaceous materials arc
Pseudodiciyonîitra primitivay Sethocapsa horoka-
naiemisy Serhocapsa pscudotnerculus, Eucyr-tidtel-
lum pyramis, Among them, Pseudodictyo-mitra
primttiva is thc zone index species (Matsuoka
1995). Set ho capsn pseud o u tenu ! us and
Eiicyrtidiellum pyrnm 'is are charactet;istic of the
lowesi Cretaceoti.s Ditrabs saffsalvadorensis zone
(Aita 1986). According to Kawabata (1988),
Sethocapsa horokanaiensis ranges from the
Tricolocapsa yaoi assemblage zone (AZ) ro the
Pseudodlctyomiira prtmhiva KL of Matsuoka
Yao (1985). This species occurred part [y wuli
P primitiva or E. pyramis in the cherr-siliceous
mudstonc séquences of the Sorachi group.
Other assemblages include Early and Late
Petmian radiolarians such as P^eudnalhdillella
scalprata morphotype postscalprata, FoUicucultus
porrcctus, F. scholasticttSy F. charved, Albaillelta
asynutieirica^ A. triangularis, A. excelsUy A. aff
levis and Nazarovella sp. (Fig. 9). According to
Lshiga (1990), PseudoalbailleÜa scalprata morpho-
type postscalprata has its range in thc upper
Lower Pcrmian. Alhaillella asymmetrica ranges
irom thc upper Lower co lower Middlc Pcrmian.
T he otlicr spccics have ranges în the Upper
Pcrmian F. scholasticus zone to thc NeoalhatllelLt
omithoformis zone oi die K. optima zone (lshiga
1990, 1991). Among them, Folltcuctdlus scholas-
ticusy F. porrectus and A. triangularis are cxtracted
GEODIVERSITAS • 1999 • 21 (4)
649
Ishida K.
Fig. 9. — Permian radlolarians Irom the inudslone clasls (A*H) and chen pebbles (1-T) m lhe chert-pebble conglomérâtes of the
Ryoseki-Monobegawa group in East Shikoku. A-D, Follicuculius charveti Caridroit & De Wevor, every ventral spine below sinus is
broken oft; E. Follicuculius scholasticus Ormiston & Babcock.; F G, Follicuculius porrectus Rudenko; H-J, Alballlella tnanguiaris
Ishiga, Kito & Imoto: I. Ventral wing-side view. Ventral wing is broken off; K, Albaillella aff. levis Ishiga Kito & Imoto of Kuwabara,
1997; L, Alballlella ekcelsa Ishiga. Kito & Imolo^ M, Follicuculius scholasticus Ormiston & Babcock; N. O, Follicuculius porrectus
Rudenko; P, Nazarovella sp.; Q. Alballlella asymmethca Ishiga & Imoto; R-T, Pseudoalbaillella scalprata morphotype postscalprata
Ishiga. Scale bars: 100 pm; a, D. F-H. N, P, Q; b. A-C. E, l-M, O, R-T.
650
GEODIVERSITAS • 1999 • 21 (4)
Radiolarians as tracers for provenance of gravels in Lower Cretaceous molasse (Outer Zone of SW Japan)
trom chéri pcbbles and mudstone clasrs.
FoIUcucuUns charveti is only excracted from ihe
mudstone clasrs. whereas PsendoalhaiUella seul-
prata moiphotype postscnlprata^ Albaillelta tisyrn-
metricUy A. exceba^ A, afh lnn> and Nazarovella
sp. are excracted from the cherc pebbles.
RECONSTRUCTION AND CORRELATION
OF OCEANIC PLATE STRATIGRAPHY
Age déterminations on cherr and mudstone grav-
els and fine clasts of mudstones allows a recon¬
struction of “continuous" stratigraphy ranging
from Middie Iriassic lo ihc lowest Cretaceous
(Fig. 10). Fhe succession rcveals a cliert-clasdc
sequencc that is usually foimd In place in the
Jurassic AC, with clear lithologie boundaty be-
tween chert and mudstone jiist m the Parahsuum
simplurn zone ol the Lower Jurassic (Flori 1990;
Matsuoka 1995).
In rhe Chichibu Superterrane, Jurassic AC is dis-
iributed both in the Sourh and North Chichibu
bclts (Fig. 2). Thcy are very close to the studied
lormations, and have OPSs ol chert-ciastic
séquences. Comparing the OPS ot the North
Chichibu Belt with the OPS uf the Sourh
Chichibu Belt, the complex of rhe North
Chichibu Belt was accreted carliêr (Fig. 11). Ihe
chéri faciès of the Norili Chichibu Belt ends in
the uppermost Triassic Camption îtiassicum zone
or the lowest Jurassic Parahsuum simplurn zone
(Suyari, et ai 1982; Tshida 1985). On the otlicr
side. chert faciès ol rhe South Chichibu Belt
continues inro the Middie Jurassic Laxtorum (?)
jitrassîcum z.one-lower Lfpper Juras.sic Stylocapsa
(?) spiralh zone (Matsuoka 1984, 1996; Ishida
1985. 1987a; Hoshina et al. 1995; Isozaki
1997b). The OPS of origin inferred from the
gravels is corrélative with the OPS of the North
Chichibu Belt rather than with the OPS of the
South Chichibu Belt (Fig. 11).
Concerning the Permian, iwo types of geological
columns are rcconstrucced. The first one is corn-
posed of chen ranging from the Lower to the
Llpper Permian. The second one is composed of
the Llpper Permian mudstone faciès character-
ized by the occurrence of Follicucullus charveti.
The distribution of F. charveti is strictly restricted
among the Late Permian faunas. The fauna that
includes F charveti is di-stributed in the Upper-
Permian peliric faciès of the Maizuru, Ukra-
Tamba and the Kurosegawa bclts (Caridroit &
De Wever 1986; Ishiga 1990; Isozaki 1997a).
Llpper Permian nnidstone-clasis are probably
derived from these beirs. On rhe conrrary, Llpper
Permian cherts are commonly includcd in rhe
Jurassic AC of the North and South Chichibu
belts in rhe Qiiier Zone of SW Japan (Fig. 11).
In the Inner Zone, they are common in the
Jurassic AC of the Mino-Tamba Belt (e.g., Ishiga
& Imoto 1980; Kuwahara 1997).
PROVENANCE OF CHERT AND
MUDSTONE GRAVELS IN RYOSEKI-
MONOBEGAWA GROUP
Among thèse radiolarian-bcaring gravels and
clasts. Triassic to Early Jurassic chert pebbles and
Early to carly Middie Jurassic mudstone clasts are
probably derived from the AC of the North
Chichibu BcJt. On the contrary, chc late Middie-
Late Jurassic and earliest Cretaceous mudstone
chîst.s are consideied to be derived from the équi¬
valents ol the Torinosu group (Isliida 1994). The
same species of lace Middie-Latc Jurassic and the
carlicsc Cretaceous radiolarians are common in
the Torinosu gioup, The Torinosu group is
upper Middle-Uppcr jurassic and lowest
Cretaceous open-sca and shallow marine sédi¬
ments composed of mudstone fades with srnall
amouiu of sandstones. muddy limestones and
conglomérâtes. The thickness Is thinner than
250 m. 'Fhe Torinosu group is now distnbuicd
in the South Chichibu Belt and the somh unit of
the Kurosegawa Belt whcre the group unconform-
ably ovcrlies the pre-Jurassic ACs and the Triassic
shallow^marine formations (Fig. 11). Ün one
hand, rhe shallow-marine Triassic formation is
never distributed in the norçh unit of the
Kuro.scgawa Belt nor North Chichibu Belt where
the Ryoseki-Monobegawa group unconformably
overlies the Permian AC directly. Thene are large
stratigraphie and faciès gaps between the
Permian AC and rbe Lower Cretaceous paralic
formations in rhe north unit of the Kurosegawa
Belt, whereas the Lower Cretaceous Takegatani
GEODIVERSITAS • 1999 • 21 (4)
651
Ishida K.
Age Lithology Assemblage or index species
CJ
lu
Archaeodictyomitra pseudoscalaris
Reworked into Ryoseki-Monobegawa
group by érosion
Sethocapsa pseudouterculus
Eucyrtidiellum pyramis
Pseudodictyomitra primitiva
Sethocapsa horokanaiensis
Cinguloturhs carpatica
Stylocapsa {7) spiralis
Tricofocapsa conexa
Eucyrtidiellum unumaensis
Thcolocapsa fusiforwis
Tricolocapsa plicarum
lu
M
Parahsuum (?) grande
Parahsuum ovale
Gigi fustis
Parahsuum simplum
Corum speciosum
Sarla (?) extenta
Capnodoce sansa
' Triassocampe long _ _
Pararues ticyrîium mediofassanicum
Hozmadia reticulata
^ Annulotriassocampe campanilis
^\PseüdostvlosDhaera iaponica
lu
\Pseudosty/osphaer3 japonica
[ Eptingium nakasekoi
\ Triassocampe aff. scalaris
\Hindedorcus holdsworthi
Albaillella aff. levis
Albaillella triangularis
Albaillella exceTsa
Follicucullus porrectus
Follicucullus scholasticus'
'Follicucullus charveti
Albailella triangularis
Follicucullus porrectus
Follicucullus scholasticus
E M
^Albaillella asymmetrica
Pseudoalbaillella scalprata
\m. postscalprata
chert
dethtal fine clastics
black mudstone & siliceous mudstone
conglomeratic formations of
Ryoseki-Monobegawa group
Fig. 10. — Schematic columns showing the oceanic plate stratigraphy of the provenancia! terranes. They are inferred from the radio-
larian-bearing chert-pebbles and mudstone-clasts in the chert-pebble conglomérâtes of the Ryoseki-Monobegawa group.
652
GEODIVERSITAS • 1999 • 21 (4)
Radiolarians as tracers for provenance of gravels in Lower Cretaceous molasse (Outer Zone of SW Japan)
-
Cret.
L
U
Jura.
M
L 1
r
Trias.
u{
M
>-
Perm.
.1
[
c
c
M [
Fig. 11. — Stratigraphy of lhe upper Paleozoic and Mesozoic formations in the North Chichibu, South Chichibu and Kurosegawa
belts in the Chichibu Superterrane. East Shikoku.
group and the Masakidani formation that are
équivalent of the Ryoseki-Monobegawa group
overlic the dbrinosu group in the south unit of
the Kurosegawa Belt and the South Chichibu
Belt. Therc are not important stratigraphie gaps
nor facial différences among the Ibrinosii group,
Ryoseki'Monobegawa group tind its équivalents
(Fig. II).
As a resuit, the auchor considers that chese cherr
pcbbles probably originated from the cherr-clas-
lic séquences and/or complexes of the North
Chichibu Belt. It also indicates that the Lower to
lower Middie Jiiras.sic ACs of the North
Chichibu Belt probably croppcd ont at the conti¬
nental side of the Ryoseki-Monobcgavva group,
and were already croded tn the Harly Cretaceous.
On onc hand, pcbbles and sniall fragments of
mudstones conr.aining the Laie Middie ro Late
Jurassic and tlie earliest Cretaceous radiolarians
probably originated froin the late Middie
Jurassic-carlicst Cretaceous cover formations that
arc the équivalent of the Torinosu group. The
équivalents of the Torinosu group were spread
widely above rhe North Chichibu Bell and they
were eroded together at the samc orogenic event.
PROVENANCE OF ACCOMPANIED
FUSULINACEAN-LIMESTONE PEBBLES
In addition ro chert pcbbles, the conglomerate of
the Lower Hanoura formation also conrains
small gravels of micritic limestones. Limesrone
gravels usually do not dérivé from long distances,
as river warets usually hâve acidic chemical
conditions, *I*hey contain Permian and Carhoni-
ferous (usLilinids specics nf FîL<iilinellt7^ Neo-
schwageririti and Yfiheiun. Among ihem,
N. cratictilifera i.s characteri.siic of rhcsc micritic
limcstonc gravels. Large blocks of white micrircs
that contain species of Ffeoschwagerina, Yabeina
and Fusulinelld arc characteristk in rhe Jurassic
ACs of the North and South Chichibu belts,
whereas rhe Cvlnniii-Lcpidolnta bearing niuddy
limesione.s are charactcri.stic in ihc Kurosegawa
Belt (Ishii 1990). Ir suggests thaï the North
Chichibu and rhe Kurosegawa belts belong to
two distinct units. It is also remarkable thaï the
fusulinid'bearing whiie micriie pebblcs are in-
cluded in rhe cherr-pebble conglomérâtes.
Thcretorc, iliese rniciite pebbles aie piobably
derived from the limesrone blocks of the North
GEODIVERSITAS • 1999 • 21 (4)
653
Ishida K.
Chichibu Belt. They are rransported together
with the radioUrian-bcaring chert pcbbles and
mudscone clasrs. Based on paleocurrcnc évi¬
dences (Marsukawa bc Tsuncoka 1993) and
faciès analysis (Ishida et ai 1992, 1996), sédi¬
ments of the Ryoseki'Monobcgawa group were
transported from the norchwesr to the southeast.
The direction of transport is relevant ro a poten-
tial provenance from the Norrh Chichibu Bcit.
Acknowledgements
The author would like to thank Prof. P. De
Wever, Prof. M. Faure and Dr. F. Cordey for
rheir critical readiug of the manuscript. I also
thank Dr. A. Matsuoka and Dr. K Hirsch sugges¬
tion about iny plan for the presenrarion. Sinccre
thanks arc also due co Dr. S. Kojima and Dr.
N. Bragin w'ho gave me valuable comments and
suggestions on the distribution and confinuiry of
the Jurassic accrcrionar)^ complex in East A.sia.
Dr. Y. Ispzaki is sinccrely chanked lor giving
frank comments about the Mikabu-Sambagawa
metamorphism. I also would like to thank
E. Lambert and A. Shinomiya who helped me
for the préparation of the manuscript.
REFERENCES
Aita Y. 1986. — Radiolarian and calcareous nanno-
fossils from the uppermost Jurassic and Lower
Cretaceous strata of japan and Tethyan régions.
Micropjjleonroloy, New York 32: 97-128.
— 1987. — Middle Jurassic to Lower Cretaceous
radiolarian biosiratigraphy of Shikoku with référ¬
encé to .selccied sections in Lombardy basin and
Sicily. Sdemx fU'porh ofTo/wkit Urthmity, Secom/
Sériés, Sendai 58: 1-9 L
Baumgartncr P. O. 1984. — A Middle jurassic-Larly
CretaceoUs low latitude radiolarian zonation based
on unitaiy a.vsodations and age ofTerliyan nuliolar-
ites. Ecln^ae Cieolo^icae Heloetir/tey Basel 7":
729-837. '
Blome C. Ü. 1983. — Upper Triassic Cüapnucho-
sphaeridae and Capnodocinae (Radtolaria) from
east-ctintral Oregon. MicropaUüntolo^pyy New York
29: 1T49.
— 1984. — Upper Tria.ssic radiolaria and radiolarian
zonation from western North America. Bulletin of
American Paleontolugy-, New York 85 (318): 1-88.
Bragin N. J. 1991. — Radiolaria and Lower Mesozoic
units of the USSR, East Régions. Transactions of
ihe Aeademy of Svknçes afthe USSP, Moscow 469.
122 p. lin RussiaiiJ.
Caridioit M. ik De Wever P. 1986. — Sonie Lare
Permian radiolarians from pcliric rocks of the
Tatsuno formation (Hyogo Préfecture). .Southwest
lapan. Marine Mivropaleontalo^^ Amsterdam 11:
55-90.
Cordey F. 1992, — Radiolarians and teirane analysis
in rhe Canadian Cordiltcra: rhe 'Mastic approach”.
Palaeogeo^raphy, Palaeontology, Palacoecologyy
-Amsterdam 96: 155-159.
De Wtver P.. Sanhlippo A., Riedel W. R. &: Ciruber
B. 1979. — Tri-assic radiolaria trom Grccce, SicÜy
and Turkey. MhTPpaleontolog)'^ New York 25:
75-110.
Dumitrica P., Kozur H. &* Mostler H. 1980. —
Contribution to the radiolarian fauna of rhe
Middle d'riassic of the Southern Alps. (îeologische
Palaeontologischc Muteilungen Innshruck, Innsbi uck
10:1-46.
faurc M. 1983a. — Lhe Mesozoic orogeny in the
Oiiter Zone of SW japan in eastern Shikoku.
Journal of Gakugeiy University of Tokushima,
Tokushima 34: 1-35.
— 1983b. — rhe pre-Cretaceous structure of the
Outçr Bçlt of Southwcsr Japan. iectorwphysicsy
Amsterdam 11.3: 139-162.
— 1985- — Microtectonic évidence for eastvsard duc¬
tile -shear in the Jurassic orogen of SW japan.
Journal of Structural Geolo^>y London 7 (2):
175-186.
FauR- M-, Caridroit M. Sc Charv^ct |. 1986 —- The
Uie Jurassic oblique collisional orogen of SW
Japan. New .structural data and svnthesis. Jhtonicsy
Washington D.C. 5 (7): 10H9-II 14.
Faure M., Iwasaki M., Iclukawa K & Yaü A,
199L — rhe significance nf Upper Jura.ssic radio-
lari.ins in high pressure meramorphic rocks of SW
]-AŸ'Ax\. Journal of SE Asiau Earth Sciences, Créât
Britain6(2): 131-136.
Coriçan S. 1994. —jura.ssic and Cretaceous radiolar¬
ian biosrratigraphy and sedimentary évolution of
the Budva zrjne (L5inaridcs, Monténégro).
Mémoires ek Géohgir, Lausanne 18 :1-177.
Hada S. & Kurimoto C. 1990. — Northern
Chichibu Tcrrane. in Ichikawa K. et al. (eds), Pre-
Cretaceous terranes of Japan, PiihUciition of IGCP
Project: Prc-Jurassic évolution of eastern Asitu Osaka
224: 165-183.
Hori R. 1990. — Lower Jurassic radiolarian zones of
SW Japan. Tramuctions and Proceedings of the
Paleontological Society of Japon, New .Séries, Tokyo
159:562-586.
Hoshina H., Kuiiinoto 1'.. Makimoto IL, Matsuoka
K., Sakai A., Sekinc K. & Takeuchi K. 1995. —
The resulr.s of recent researches on the Paleo-
Aksüzoic of the Kanto Mountain.s, central Jnpan.
Earîh Science (ChiJeyu KagakuJ, Matsunioto 49:
27T291 [in Japanese with English abstract].
654
GEODIVERSITAS • 1999 • 21 (4)
Radiolarians as tracers for provenance of gravels in Lower Cretaceous molasse (Outer Zone of SW Japan)
Ichikawa K., fsliü K.. Nakagawa C.> Suyari K. 6c
Yamashita N. 1953 —On ".Sakashu-iinconformi-
Jour fl al of Cu^kH^ci^ Tokuihtrnu Unit)ersity
(Natural ScieNi’es}^ Tokushima 3: M-74 [in
Japanese with Lnglish abstract].
IntcrRad |urassic-Crcraceons Working Group.
Baumganncr P. O. ci al. (cd.s) 1995. -— Midtile
Jurassic to Lower Cretaceous radiolaria of l'ethys;
Occurrences, Systemutics. Biochrunology,
Environmenrs- Memoifes de (Icoh^e. Lausanne 23t
1-900.
Isliida K. I9S3 — .Siratigraphy and radinlarian
assemblages the Triassic and Jurassic siliceous
sedimentary rocks in Konose valley, l'okushima
préfecture, .Southwest Japan. Journal of Sdnur.
University of lokushinuu Idkushima 10: 111-141
[injapane.se with Englisli abstraci|.
— 1984. — The ordet of appcarancc of .somc radiola¬
rians in Ani.sian bedded-cheri bodies in the South
Zone of the Chichibu Belt. easiern Shikoku.
Journal of Sciencr-. Lhiiversiiy of Tokiisbima.
Tokushima 17: 15-29 [in Japanese with English
abstract].
— 1985. — Prc-Crcraceous sediments in ihe
.Southern Notth zone of the Chichibu Belt in
Tokushima préfecture^ Shikoku. Journal of
Geological Society of japafu *1 okyo 91 (9): 553-567
[in Japanese with English abstract).
— 1987. — Geolog)'^ and *nicro!)iostratigfaphy of the
Southern Chichibu 1 errane iii eastern Shikoku»
Southwest Japan. Journal (f (Jnitwity oj
Tokushima. Toku.sbim.i 2: 47*121 [in Japanese
with English abstract]
— 1994. — R-idiolarians from rhe shallow marine
Lower Cretaceous of th<rKuroscgawa Tcrrane, Easr
Shikoku: .i distinctive key market for rhe paleoenvi-
ronmcntal changes. Seventh meeting of the
Internationa! Association of Radiolarian Paleon-
tohgists. (Abstracts). Osaka: 56
Ishida K. 6c Ha.shimoio H. 1991a. — Radiolarian
assemblages from the Lower C.’retaceous formations
of the CTiichibu Terrane in eastern Shikoku and
their ammonire Journal of Scieme. Unwersity
of Tokushima. Toku.shima 25: 23-67 [in Japanese
with Englisti abstnittl.
Ishida K.. Hashimoto H. & Ko/ai T. 1992. — Liiho-
and bio'Siratigraphy of the Lower Cretaceous
Hanoura formation in East Shikoku. Part L I hura
and Tsukigatani rouies in K.ttsuura-gawa area.
Jonrnal oj Svieucr^ Uniuersity of Takusbimay
Tokushima 26: 1-57 |in Japanese W'irh English ab¬
stract).
— 1996. — Litho- and bio-stratigraphy of the l.owcr
Cretaceous Hanoura formation in East Shikoku.
Part 2, Study of rhe Lower Cretaceous formations
of the Hanoura Hill. Naturai Siience Research of
University oJ' Tokusbimay Tokushima 9: 2?s-À7 [in
Japanese with English abstract).
Ishiga H. 1986. — Late Carboniferous and Permian
radiolarian biostraiigraphy of Southwest Japan.
Journal of Geoscicnce. Osaka City Umversityy Osaka
29:89-100.
— 1990. — P.ileozoic radiolari.tns, /;/ Ichikawa K. et
al. (eds), Pre Cretaceous Ecrrancs of Japan,
Piihlicattcm of fCCP Project: Prefurassic Evolution
of Eastern Asia.. Osaka 224: 285 295.
— 1991. — Description of a new /W/n/nr/ZZ/n species
(tiifn .Southwest Japan Mémoires oJ Eactf/ty of
6cit‘nû\ Shimane Univrrsityy Matsue 25: 107-118.
Ishiga IL 6c Imoto N. 1980. —Some Permi.tn rndio-
larians m the Tamba district, Sotuhwcst Japan.
Earth Science (Chikyu Kagaku), Tokyo 34:
333-345.
Ishii K. 1990. — Provincialiiy of some fusulinaccan
faunas of Japan. tn Ichikawa K. et ai (cd.s), Pre-
Cretaccous rcrranc.s ni Japan, Publication of IGCP
Project: Prefiirassic Evolution of Eastern Asia. Osaka
224: 297-305.
Isozaki Y. 1997u. — C.ontrascing two types uf orogen
in Permo-Triassir Japan: Acerctionnary versus colli-
sional. Tht fsJand Ari\ C2trlton South Victoria 6
{l);2-24.
— 1997b. — Jura.ssic accrcuon lecionics of Japan.
The hland Arc^ Cariton South Victoria 6 (1):
25-51.
Isozaki Y., Hashlguchi T. & Itaya T. 1992. — The
Kurosegawa kllppe; an examination. Journal of
Geological Society ofjapan^ Tokyo 98 (10):
917-941.
K.iwubata K. 1988. — New species of kuest Jurassic
and earliesr CTetaceous radiolarians from the
Sorachi group in IJokkaido, Japan. Bulletin of
Osaka Muséum of Naturai Histosy. Osaka 43: 1-13.
Kojima S. 6c Mizuiani S. 1987. — Tri.tssic and
Jura.ssic rndiolaria from ihc Nadanhada range,
Northeast China. Tremsaertons and Ptvceedtngs of
the Paiaeontidogual Sovictv of faoufc New Séries,
Tokyo 148: 256-275.
Kûzai T. 1996. — Lower Cretaceous forsnations and
sedimcfitarv envirvnments in the Ryoseki-Monobegawa
area. KoiJjî préfecture, .S'IV Japan. Ph. D. Thesis of
the Pacific western Universit)', Los Angeles: 1-79.
Ko/ur H. &L MostIcT H. 1994. — Ani.sian to middie
Carni.in radiolari.an zonation and dc.scriptiûn of
-voine stratigraphically importanc radiolarians-.
Geologtsche und Palaeoniologische MilteiUingen
Inndimck-. Innsbruck 3: 39-255.
Kuwaham K. 1907. — Evolutionary patterns uf Lue
Pcrniian AlhaiiieUa (Radiolaria) as seen in bedded
chcir sections in the Mino Beir, Japan Marine
Micsvpaleonwlo^. Amsterdam 30: 65-78.
Mat.sukjwa M. & Eio F. 1987. — Siratigraphy and
vedimencary environment of the Lower CTetaceous
System in the Katsuiifigawa basin, Southwe.st
Japan. Cooiparison ol ihc Cretaceous subbcits in
the Chichibu Belt Jourmü of Gcologind Society of
Japany Tokyo 93 (7 l 491-511 lin Japanese witn
English abstract).
GEODIVERSITAS • 1999 • 21 (4)
655
Ishida K.
Matsukawa M. 6c Tsuncoka T. 1993. — Scdimcnrar\'
environments aad paleogeography of thc Lowcr
Cretaccous in .Southwest Japan based un paleobio-
geography of antnionitcs and dinosaurs. Memoirs oj
Geological Society of Japafi/Vokyo 42: 151-165 [in
Japanescr with Kngfish abstracr).
Matsuoka A. 1984. — Togano group of rhc Southern
Chichibu Tcminc in the western part of Kochi pré¬
fecture. Southwest Journal of Gtologicnl
Society of Japan, Tokyo 90: 455-477 [in japanese
with Hngli.sh abstract].
— 1995. — Jurassic and lower C'retaceous radiolarian
zonation in |apan and in rhe western Pacific. The
îslandArc. Carlton South Victoria 4:140-153.
— 1996. — Coirclaiion between thc Sauibagawa
metamorphic rocks and non-ineiamorphic accre-
tionary complexc.s based on paleontological data:
78-85 (in Japanese with hngli.sh abstract], /w
Shimamoro T. et al. (eds), Tcctorncs and Meta-
morphtsm. Soubun Cu. Lcd., Tokyo.
Marsuoka A. bi Yao A. 1985. — Latest furassic radio-
larians front thc Torinosu group in Southwest
Japan. Journal oJ Gefncietne of Osaka City
University^ Osaka 28: 125-145.
— 1986. — A newly piopo.sed radi‘4arian zonation
for the Jurassic of japan. Marine Mkt'opaleontolo^^
AmsttTdam 11:91-106.
Mizutani S. 1995 — Meso/.oie évolution of Japanese
Islands. in Chatig K.-H. (cd.), Environmcntal and
tectonic history of East and South A.sia with
emphasis on Cretaceous corrélation (IGCP 350),
Procccdinei of }5th Internotittnal Symposium oj
Kyungpook National [JmveniTy^ Taegu: 11-41.
Miyamoto 1- & Kuwazuru J. 1993. — Findings of
Early Jura.ssic radiolarians from the liashirimizu
formation ar thc Mîkawa valley, Kumamoto prcfcc-
ture, Kyushu and its geological significancc. in Yao
A. (ed.), Proceedin^ ofdth Radiolarian Symposimn^
News of Osaka Mkropaleontolo^sts^ Spécial Volume,
Osaka 9: 165-175.
Nakaseko K.. & Nishimura A. 1979. — Upper
Triassic rudiolaria Iront Southwest Japan. Science
Report of CoUeg^t of General Education Osaka
Univeriity^ 0.s.tka 28: 61-109.
Sashida K 1988. — Lower Jurassic multisegmented
Nassellaria front the Itsukaichi are;i. western part of
Tokyo l'refetturc, Central Japan. Science Report of
Institme of Geosciences. LTnivcrsity of T.sukuba,
Section B. l'sukuba 9; 1-2"’.
Seiders V. M. be: Blomc C. D. 1984. — Clasi compo-
nenc of Upper Me.sozoic congloniçrates of thc
California Coast Ranges and their tectonic signifi-
cance, in Blake M. C. Jr. (ed.), Franciscan Geology
of Northern California, Society of Economie
Palcontologists and Mineralogists, Pacific SectioHy
Bakfsficld 43: 135-148.
— 1988. — Implications of upper Mesozoic con-
glomerate for suspect terrane in western California
and adjacent arca.s. Geological Society of America,
Bullerin, Boulder 100: 374 -391.
Sugiyama K. 1992. — Lower and Middie ‘Lriassic
radiolarians from Mt. Kinkazan, Gifu préfecture,
central j-jp.an. l'ranutctions and Proceedings of
Paleontological Society of fapan, New Sériés, 'Eokvo
167:1180-1223.
Suyari K., Kuwano Y. & Ishida K 1980. —
l^iscovery of lare Tiiassic conodonts from the
Sambagawa metamorphic belr proper in Western
Shikoku. journal oj Geologita! Society oj Japan,
Tokyo 86: 827, 828 [in Japanese with Hnglish ab¬
stract].
— 1982. — Scratigrapbv and geological structure of
rhc Mikabu grcenrock terrain and its cnvtron-
mcncs. IL Soinc information abour thc Mc.sozoic
stratigraphy of thc North subbcit of the C'hkhibu
Belt. Journal of Science, üniversity of Tokushima,
Tokushima 15: 51-71 [in Japanese with English
abstract].
Suzuki H- bc [tyya T. 1994. — Acerctionarv com¬
plexes of the Kurosegawa» northern Chichitu and
Sanbagawa beit.s in the Kamikatsu town area
(Shikoku), Southwest Japan. of Geological
Society oj Japan. lOkyo 100 (8): 585-599 [in
Japanese with English abstract].
Taira A.. Saito Y. bc Hashimoro M. 1981. —
Fundamernal process in lurrnation of thc Japanese
Islands. Oblitine subduction of plates and strike-
slip movemenr. Kagaku, l'okyo 51: 508-515 [in
Japanese].
Ta.shiro M. 1986. — Palcobiogcograpby and palcoe-
cology of thc Creiaccous System of Southwest
Japan. Fwi/Zf, Tokyo 4î : 1-16 (in Japanese].
Tashiro M. Zk Ko/.ai T. 1991. — Bivalve fossils from
lhe type Monobcgavva gtoup (Pan V). Research
Report of Kochi UniverdtVi Kotbi 40: 189-204.
Tazawa J. 1993. — Pre-Neogene tecronlcs of the
japanese Islands lrc»m the viewpoint of paleobio-
Joutnal oj the Gealoyjxal Society of Japan,
Tokyo 99 (7): 525-543 |in Japanese wirh English
abstract].
Yao A. 1982. — Middie l'riassic to early Jurassic
radiolarians from the Inuyama area, Central japan.
humai of Geoscience of Osaka City Vnivcrsity,
Osaka 25; 53-70.
— 1990. — Triassic and Jurassic radiolarians, in
Ichikawa K. et ai (eds), Pre-Crctaccous Terranes of
Japan, Publication of IGCP Project: Prc-Jurassic
Evolution ofEasiem Asia, Osaka 224: 329-345.
Suhmitted for publication on 29 january 1998;
accepted on 3 November 1998.
656
GEODIVERSITAS • 1999 • 21 (4)
Lower Triassic (Spathian) radiolarians from the
Kuzu area (Tochigi Préfecture, central Japan)
Yoshihito KAMATA
Department of Earth Sciences, Faculty of Science, Yamaguchi University
Yamaguchi 753-8512 (Japan)
kamakama@po.cc.yamaguchi-u.ac.jp
Kamata Y. 1999. — Lower Triassic (Spathian) radiolarians from the Kuzu area (Tochigi
Préfecture, central Japan). in De Wever P. & Caulet J.-P. (eds), InterRad VIII,
Paris/Bien/ilte 8-13 septembre 1997, Geodiversitas 21 (4) : 657-673.
KEYWORDS
Ashio Terrane,
conodonts,
Entaciiniidac,
Palaeoscenidiidae,
Radiolaria,
5paihUn.
Lower Triassic.
ABSTRACT
A well-preserved Lower Triassic radiolarian fauna was found in a siliceous
claystone and cherr séquence in the Kuzu area of the Ashio Terrane, central
Japan. This fauna includes “Paleozoic type” radiolarians represented by spi-
cular type Palaeoscenidiidae and Entactiniidae with some common species of
the Latc Early Lriussic Purentactinin rtakatsugawaemis (Pn) Assemblage.
Spathian conodonts Ncospathodus trianguLiris (Bcnder) and Neohindfoddla
benderi (Kozur & Mosricr) co-occur with these radiolarians. Bascd on the
faunal analy.sis and chronological dating by conodonts, ihis radiolarian buna
probably represents an older part of the Pn Assemblage, w'here “Paleozoic
t)'pe’' Enractiniidac are still a dominant componenr in Early Triassic time.
MOTS CLÉS
1 errane d’Ashio.
conodontes,
Emactiniidac,
Palaeoscenidiidae,
Radiolaria.
Spathien,
Trias inferieur.
RÉSUMÉ
Ritdiolaires triassiques inférieurs (Spathien) de la région de Kuzu (Préfecture de
Tochigi, Japon central).
Une faune bien conservée de radiolaires du Trias inférieur a été trouvée dans
une série de pciites siliceuses et de jaspes dans la région de Kuzu, Ashio
Terrane, Japon central, (’ette faune inclut des radiolaires de « type paléo¬
zoïque » représentés par des spiculés de type Palaeoscenidiidae et Entacti¬
niidae avec quelques espèces communes de l’Assemblage à Parentactinia
nakatsugatoaensts (Pn) de la fin du Trias inférieur. Des conodontes spathiens
Neospathodus triangularis (Bendcr) et Neohindcodrlla benderi (Kozur ôf
Mostler) co-existent avec ces radiolaires. Sur la base des faunes analysées et de
la datation par les conodontes, cette faune de radiolaires représente probable¬
ment une partie ancienne de l'assemblage à P. nakatsugawaensis, dans lequel
les Entactiniidae de « type Paléozoique » sont encore dominants au Trias
inferieur.
GEODIVERSITAS • 1999 • 21 (4)
657
Kamata Y.
INTRODUCTION
Since radiolarian extraction by the HF method
was established, the biostratigraphy and taxono-
my of Triassic radiolarians has developed rapidiy
mainly in the European Terhys (e.g., Ko7Air 6c
Mostler 1972; Duniitrica 1978a, b; De Wever ei
ai 1979), western North America (e.g-, Pessagno
et al. 1979; Blome 1984), and western Pacific
régions (e.g., Naltaseko & Nishimura 1979; Yao
1982). Due to rhe scarcir>' of radiolarian-bearing
Lower Triassic vsequences around the world,
Power Triassic radiolarian biostratigraphy lags
well behind thaï of the Middit Triassic to
Jurassic (e.g., Matsuoka Yao 1986: Hori 19S8,
1990: Matsuoka 1995a. b; Sugiyaina 1997).
Lithological and geochemical investigations hâve
recently been undertaken in Upper Permian and
Power Triassic sequences involving the Permian-
Triassic (P-T) boundary in varions areas in Japan
(Yamakita 1987; Ishida et ai 1992; Kuwahara et
ai 1991; Sugiyama 1992; Kamata & Kajiwara
1996). Only limited information is available on
the biostratigraphy of Diwer Triassic radiolarians
(Sashida 1983, 1991: Sashida & Tgo 1992;
Sugiyama 1992, 1997; Blome Reed 1992;
Nagai & Mizutani 1993: Kozui et al. 1996).
Biostraiigraphic and taxonomie investigations arc
important to establish the transition betM'cen the
Paleozoic and Mesozoic radiolarian faunas.
Accordingly, rhis paper présents results of a detai-
led investigation of Power Triassic radiolarians in
the Kuzai area of the Ashio Terrane, Tochigi
Préfecture. In a preliminary report, Kamata
(1995) described Power Triassic radiolarian bios¬
tratigraphy from a section belonging to die Kuzu
Complex. In rhis paper, the systematics ol Power
Triassic radiolarians from two samples in the
same section are presented.
GEOPOGIC SETTING
Power Triassic radiolarians were obtained from a
Maebashi
139 15
45
36”20'H
Ashio sedimentary complex | ; Granitic rocks
[ ~ I Tertiary and Quaternary volcanic rocks | | Alluvial deposits
Utsunomiya
SEA OF JAPAN
Fig. 1 . — Index map showing A, the distribution of Inner Zone of Southwest Japan; B. the outline of geology of the Ashio Mountains;
M.T.L.. Médian Tectonic Line; l.-S.T.L., Itoigawa-Shizuoka Tectonic Line; T.T.L,, Tanakura Tectonic Line.
658
GEODIVERSITAS • 1999 • 21 (4)
Spathian radiolarians
siliceous claystone and bedded chcrc sequence of
the Kuzu Complex (Kamata 1996) in the Ashio
Terrane (Fig. 1). The Kuzu Complex consists
mainly ot stacked slices of a cherr-clasric séquen¬
ce with huge rhrusi sheeis of greenstone and
limestone. The chert-claitic sequence is formed
of Lower Trlas.sic black carbonaceous or siliceous
claystone, Middie Triassic to Lower Middle
Jurassic chert, and Middle co Lower Lfpper
Jurassic clasric rocks (Kamata 1996, 1997). The
investigated section, bclonging to die lower part
of rhis complex, is located at the southeastern
part of Tanuma Town, Aso-Gun, Tochigi
Préfecture (Fig. 2). Ir is exposcd along a coad-cut
of the Natund Laboratory of Tofq'o Universiry of
Agriculture and Technology. The section is com-
posed of altcrnating black .siliceous claystone and
dark gray cherr with pale green siliceous clay-
scone interbeds. The occurrence of représentative
species of the Parentactina nukatsugawaemis (Pn)
Assemblage uf Sugiyama (1992) were reported
from rhis section prcviously (Kamata 1995). The
tentative stratigraphy of this section is established
in ascending order as follows (Figs 3, 4):
Unît A. Srrongly sheared sandstonc, approxima-
tely 2 m rhick.
Unit B. Gray, medium-grained sandstone inclu-
ding blocks of bedded cherr yielding Upper
Triassic radiolarians, about 8 m thick.
Fig. 3. — Route map along the road*cut of the Natural Laboratory of Tokyo Institute of Agriculture and Technology showing the
occurrence of siliceous rocks and radiolarian localities. a, gray bedded chert; b, greenish gray siliceous claystone intercalated with
black siliceous claystone and black chert; c, sandstone; d, sheared zone; e, strike and dip of bedding plane; f, strike and dip of fault
plane.
GEODIVERSITAS • 1999 * 21 (4)
659
Kamata Y.
TNK-R-09
TNK-R-08
TNK-38
TNK-37
TNK-36
TNK-35
TNK-34
10 m
Fig. 4. — Columnar section of the study section, a. bedded
chert; b. siliceous claystone with layer of chert; c, sandstone;
d, sheared zone: e, fault.
Units C, D. Both unies composed of pale green,
fissile, siliceous clRysrone; wcll-developed .scaly
cleavages developed siibparallel to bedding plane.
Unît E. Unit composed mainly of pale green
claystone wîili inrercalation.s ol black siliceous
and/or gray ro black chert layers a few centime-
ters thick. The black siliceous claystone is rather
muddy cornpared with the chert, and more sili¬
ceous than the pale green siliceous claystone. The
black siliceous claystone is similar lo the muddy
chert of Sugiyama (1992). Thickness and
amount ot the black siliceous claystone and chert
layers increases upwards in the unit; siliceous
claystone and chert layers alternate in the upper
part. Minor folding is présent. Ahcrnacing black
siliceous claystone (TNK-R-08) and black chert
(TNK-R-()9) front the upper part of Unit E
contain Spathian radiolarians and conodonts.
Radiolarian fauna from samplcs ’l’NK-34 to
38 described by Kamata (1995) is also of
Spathian âge.
Unit R Well-hedded gray to black chert contai-
ning Mîddiç Triassic radiohirians of the
Triasîocanxpe deweiKi'l Assemblage of Yao (1982).
GEOLOGIC AGE AND RADIOLARIAN
FAUNA
Sample TNK-R-OO contains a radiolarian fauna
comparable to the Parentactima nakatsugawaensis
Assemblage of Sugiyama (1992) and also a rich
conodont fauna composed of Neospathodm tri-
U7iguLirh (Bcndei 19*^0), N. clinatm Orchacd &
Sweet, 1995, Cornudina igoi Koike, 1996,
Neohmdeodella baideri (Ko/ur & Mostler, 1970),
and manv unidentified ramiform éléments
(Fig. 5). No agc-diagnostic conodonts are présent
in sample TNK-R-08 whicli contains very well-
preserved radiolarians.
Neospathodus triangularis (Bender, 1970) and
Neohindeodella henderi (Kozur Ôc Mostler,- 1970)
are well-known l/ate Early Triassic conodont spe-
cies (Fig. 6). The occurrence ol Ne<npathodus tri-
angularis (Bender, 1970) has bcen reported from
the Spatitian of ihe Tcthyan région in Kitshmir,
the vSalt Range, Spin, and Japan (e.g., Sweet et ai
1971: Gocl 1977; Koike 1981; Matsuda 1985).
Matsuda (1985) and Sweet (1988) summarized
the conodont zonations and indicated ranges of
Lowei Triassic conodonts based on these biostra-
tigraphic investigations. In thcsc régions, N. tri-
angiilaris îs onc of the main componenrs of the
Spathian conodont fauna. The base of the N. tri-
iinguLiris-N. hormeri zone (Matsuda 1985) and
N. triangulatis zone (Sweet 1988). both indicati¬
ve of the lower Spathian, are defmed by the first
occurrence of rhis species. In Japan, N. triarigu-
laris is a characierisiic specie.s of the A^.
triangularP-N. ? collinsoni zone of the lower
Spathian (Koike 1981). Furthermore, Koike
(1996) described Cornudina igoi from the Taho
Formation distributed in Ehime Préfecture south-
660
GEODIVERSITAS • 1999 • 21 (4)
Spachian radiolarians
Fig. 5. — Spathian conodonts from the TNK-R-09. A, Neospathodus triangularis (Bender); B, C, Cornudina igoi Koike; D, H,
Neohindeodella benderi ^Kozur & Mostler); E, F, Neospathodus sp.; G, ? Neospathodus clinatus Orchard & Sweet. Scale bars:
100 pm.
wcst Japan, and indicated that this species occurs
in the basal part of the N. trunigubris-N, horme-
ri zone of û\c lowex Spàihian (Fig. 6).
The radiolarian fauna in this paper consists
mainly of Palaeoscenidiidae and Encactinudae
with some common specics of the Pn Assemblage
of Sugiyama (1992) and TRI zone of Sugiyama
(1997). The fauna is rcpresented by species of
Archaeoseniautis, Parentactinia, Entactiriia (?),
Enlactinoiphaera (?), Ctypiostephanidiunh and
Pantancllium (?) (F'ig. 7). Tripod or mono-seg-
mentcd Nasse!larians, such as Hozmadia and
mulci-scgmcnr Nasscllaria such as Triassocampe
rarcly occur.
SERIES
LOWER TRIASSIC : MT.
Stage
Smithian : Spathian Ani.
conodont zones (Koike 1981)
N. dieneri- « N.triangularis- ^
N. conservatius ' N.7 collisoni
Neospathodus triangularis
(Bender)
Cornudina igoi Koike
Neohindeodella benderi
(Kozur & Mostler)
Fig. 6. — Known ranges of detected conodont species plotted on the conodont zones proposed by Koike (1981).
GEODIVERSITAS • 1999 • 21 (4)
661
Kamaca Y.
number
TNK-34
TNK-35
TNK-36
TNK-37
TNK-38
TNK-R-08
TNK-R-09
species Lithology
s.c. ch. s.c. ch. ch. s.c. ch.
-Arc/iaeosemanf/s brevispinosa Kamata
Archaeosemantis crisiianensis Dumitrica
Archaeosemantis sp.
Archaeothamnulus sp.
Parenîacîjnia karasawavamaensis Kamata
1 + + + 1
1 + + + 1
1 + + 1 1
1 1 1 1 1
1 1 1 1 i
+ + + + +
1 1 + + 1
\Parentactin(a nakatsugawaensis Sashida
Parentactinia sp. A
iParentactinfa okuchichibuensis (Sashida)
Parentactinia sp.
\Protopsium sp.
+ - + + + + +
+ + + -- + +
+ + + - + - +
Plafkenuwsp.
Pantaneihum (?) virgeum Sashida
Pantanelliurrt (?) sp. A
Pantanellîum (?) sp.
\Tiborelfa agrfa Suqiyama
1 + 1 + i
i + 1 1 1
i + 1 1 1
+ +II +
1 + i 1 1
1 + + + 1
1 + 1 1 1
Hozmadia et. ozawai Sugiyama
Hozmaciia sp.
Cryptostephanidium longispinosum (Sashida)
\Cryptostephanfdium sp.
'Oer//;sponaus sp.
1 + 1 1 1
+ + + + +
1 1 1 1 1
1 + + + 1
1 + + + 1
+ + +I +
1 1 1 1 1
Triassobipedts (?) sp.
Zeviusi?) sp.
Ëntactinia (?) îanumaensis Kamata
Bniactima nikorni Sashida and Igo
Potventactinia (?) crux SuQiyama
1 1 1 1 1
1 + + 1 +
1 1 1 1 1
+ 1111
+ 11 + 1
+ + 1 1 1
1 1 1 1 1
Polyentactinia furutanii Sugiyama
Poiyûntacbnis sp.
Entactinosphaera (?) sashidai Kamata
Entactinosphaera chiakensis Sashida and Igo
Entactinosphaera sp
1 1 1 1 1
+ 1111
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
+ + + + +
+ 1111
Thaisphaera (?) Igoi Kamata
^Entactiniidae gen. et sp. indet
1 1
+ +
1 1
1 +
1 +
1 +
1 +
Fig. 7. — List of Early Triassic radiolarians from the study section, s.c., siliceous claystone: ch,, chert.
Sugiyama (1992) considered the âge of Pn
Assemblage as late Spathian based on co-occur-
ring conodonts belonging to the Neospathodus
hormeri Assemblage but suted that the lower
limit of this assemblage is unknown. Rccently,
Sugiyama (1997) comparcd TRO and TRI with
the lowcr part and the upper part of the Pn
Assemblage of Sugiyama (1992), respectively. In
this study, N. triangiilaris (Bender, 1970) and
Cornudina igoi Koike, 1996 arc associated with
some commun radiolarian spccies of the Pn
Assemblage. Kusunoki & Imoto (1996) also
reported a radiolarian fauna attributed to the Pn
Assemblage associated with the lower Spathian
conodonts N. triangulam and Gondolella jubata
(Sweet, 1970). They emphasized that the Pn
As.scmblage ranges down to the lower Spathian.
This présent evadence suggests that the range of
some species of the Pn Assemblage may extend
down to the lower Spathian.
As hriefly stated above, the radiolarian fauna dis-
cussed herc has both Palcozoic and Lower Triassic
affinities. The family Entactiniidae is panicularly
abondant exceeding more than 50% of the cotai
number of the idcntified radiolarian species within
this fauna. Considering the range of the cono¬
donts, the radiolarian fauna represents an older
part of the Pn Assemblage (Sugiyama 1992) and
662
GEOOIVERSITAS • 1999 • 21 (4)
Spachian radiolarians
TRO (Sugiyama 1997), and “Paleozoic type”
Entactiniidae are still a dominant component in
Early Triassic assemblages. Futher analysis of
Spathian radiolarian faunas is necessary because
FollicuculuSy a représentative species of TRO, bas
not been found in the studied section.
METHODS AND TECHNIQUES
Radiolarian specimens were separated from sili-
ceous rock .samples in the following manner:
(1) rock samples were crushcd inio small frag¬
ments of several centimeters; (2) crusiied samples
were placed in five percent hydri>fluoric acid for
24 hours; samples were wa.shcd and sieved
using a mesh ot 50 pm opening, tlic residue was
dried in an oven. Well-prescn^d radiolarian .spé¬
cimens were mounted on an SEM plug and gold
coared in a vacuum evaporator. The surface tea-
tures and inner .structures were observed with the
Scanning Electron Microscope.
SYSTEMATIC PALEONTOLOGY
Ail figured specimens are deposited in collcctionvS
of the Department of Earth Sciences, University
of Yamaguchi (DEUY).
Subclas-s RADIOLARIA Müller, 1858
Order POLYCYSTINA Ehrenberg, 1838
emcfid. Riçdel, 1967
Suborder SPUMELLARIA Ehrenberg, 1875
Family PalaEOSCI-NIDIIDAE Riedel, 1967
emend Holdsworth, 1977
dmws Archaeosemantis Dumitrica, 1978b
Archaeosentantis brevispinosa n. sp.
(Fig. 8A-C)
Types. — Holor^’pc, Figure 8A, TNK-R-08, DEUY-
YK3617; pararvpes, Figure 8B, TNK-R-08, DEUY-
YK3627, Figure 8C, DEUY-YK3618.
Etymology. — Brevispinosa means having short
spines.
Occurrence. — Sample TNK-R-08, Kuzu area,
central Japan.
Dimensions (pm). — Based on eight specimens:
Icngth of apical spines 5.0 to 21.8 (average 15.9);
length of basal spines 72.8 to 126.0 (average 85.3).
Description
Species composed usuaJIy of eight spines consis-
ting of four apical spines and four basai spines,
arising from a short médian bar (MB). The four
basal spines are conical, short, rod-like, and rug-
ged. Two, conimonly straight basal spines diver¬
ge from one end of MB. Three or four apical
spines; spines conical, very short, and obliquely
divergent upward from end of MB at a smaller
angle.
Remarks
(3ompared with other ArchaeosemantiSy the basal
and apical .spines of this species are shorter.
Archaeosemantis cristianensis is similar to this spe-
cies, but difiers by possessing long and down-
wardly curved basai spines.
Archaeosemantis cristianensis
Dumitrica, 1982
(Fig 8D, H)
Archaeosemantis pterostephanus Dumitrica (part)
I978h: 52. pl. 5, figs 7, 8 (non pl. 5.Tigs 9-12).
ArchaeosCfTianfis erhtianensts Dumitrica, 1982; 423,
pl, 1, lig. lli pl. 3, ftg. lE pl 4, figs 5, 7, 11, pl 6,
fig. 2, pl. 7. figs 3. 12, 13. - .Ando er ai 1991, pl. 9,
fig. 12. -Nagai & Mi/utani 199.3:7, pl. 1, fig. 9.
Archaeosernanrii ventata Sashida, 1983: 171, pl. 36,
figs 1-9; 1991; 686. fig. 5-4. 5, 6, 7, 8. - Nagai &
Mizuuni 1993; 7. pis 1. U.
Archaeosemantis sp. aff. A. venusta .Sashida, 1991: 686,
figs 5-9. - Kamata 1995: fig. 6-1,2.
Archaeosemantis .sp. - Sashîda 1991: 686, fig. 5-1, 2,
3.
Archaeosemantis cristianensis Dumitrica, 1982 mor¬
photype A Sugiyama, 1992; 1209, fig. 14-3.
Archaeosemantis cristianensis Dumitrica, 1982 mor¬
photype B Sugiyama, 1992: 1209. fig. l4-6.
Occurrence. — Common in TNK-R-08, 09, Kuzu
area, Tochîgi Préfecture. Mc. Kinkazan and
Minokamo City, Gifu Prélecture. Kanto Mountains,
Saitama Préfecture, central Japan. Vicentinian AIp.s,
Italy.
Remarks
Dumitrica (1982) described specimens ofA. cris¬
tianensis having broad variation in the disposi-
GEODIVERSITAS • 1999 • 21 (4)
663
Kamata Y.
tion and lengch of spines. Sugiyama (1992) pro¬
posée! rw'o morphorypes A and B for rhis species,
and staced chat phenotypic variation is cau.sed by
the rotation of half of morphotypt? A around the
axis of the médian bar (MB).
Genus Parentactinia Dumirrica, 1978b
Parentactinia karasawayamaensis n. sp.
(Fig. 9G^M)
Tyi’es. — Huloiypc, Figure 9H, TNK-R-OS, DEUY-
YK3493: Pararypes, Figure 9G. TNK-R-08. DEUY-
YK3654; Figure 91, TNK-R-OH, DElJY^YK3h53;
Figure 9J, FNK-R^OS, DEUY-YK3650; Figure 9 K,
TNK-R-08, DHIJY-YK363S; Figure 91., l’NK-R-08,
DFUY-YK3657; Figure 9M. TNK-R-08, DEUY-
YK3533.
Etymology. — Species name karasawayamaensis
cornes irom Karasawayama Shrine close to rhe studied
section.
OccUR-RENCn. — Abundant in TNK-R-OS, Kuzu
area, central Japan.
DimeN-SION.S (pni). — Ba.scd on ten .speciinens: .shell
diameter, 160 to 190 (average 178); length of apical
or basal spines 100 to 220 (average 175); ail spines
broken, see Fig. 9L; wall thickness less than 10.
Description
Species with spherical latticed shell and a spiculé
consisring of seven or cighr rod-likc spines ari-
sing from à short eccentric MB. Rod-like spines
straiglit and penetrating the wall ol shell.
Cortical shell, ttiin, and relaiively smooih surfa-
ccd, enclosing an ecceniric spiculé widi seven or
eight radial spines ând a very short MB. Cortical
shell nearly .spherical and supported by ail radial
spines. Pore pattern of .shell composed of inter¬
sections of bars forming numerous quadrangular
or triangular pore frames. Main radial spines
long, rod-like, and occasionally ciirved tipward
outside of shelh Internai spines arise Irum MB
and penetrate the shell wall, Main spines slightiy
thicker outside shell wall than in the internai
portion. Four apical spines situated in the iipper
hémisphère diverge upwardly at about 45° above
the horizontal plane. Commonly three or four
basal spines. MB is eccentrical.
RJ'MARKS
This new species is similar to Polyentactinia (?)
phauhahingensis^ reported by Sashida & Igo
(1992), but the latter lias an uneven shell wall
lorincd ot intcrsccting bars.
Parentactinia nakatsugawaensis
Sashida, 1983
(Figs 8E-G, I-N, 9A)
llnuamcd Spumellaria — Matsudn üt Isozaki 1982:
pl. 3. fig.s 33-35.
Varcntaeiinia nakatsugawaensis Sashida, 1983:
172-173. pl. 37, fig.s 1^9; 1991: 687. Fig. 5-15, 16,
lies 6-1, 3-6. — Sugiyama 1992: 1212, fig. 14-7-10, ~
Bloine A' Rffd 1992: 376, Fig. 14-3, 4. — N.ïgai &
Mizurani 1993: pl. I, Hgs 1-6. * Kamata 1995: hg. 6-
4. not 8. - Kusunoki & Imoio 1996: 91, Fig. 1, -
Sugiyama 1997-* 184. llg. 27-2.3.
Parentactinia Sa.shida, 1991: 689, Fig. 7.
OCCUKRENCE. — Abundant in TNK-R-08, 09, Kuzu
area, Tochîgi Préfecture. Mt. Kinkazan and
Minokamo City, (.îifli Prélecture. Southern Kameoka
City. Kyoto ITefecture. Kanto Mountains, Saîtama
PrcFccUire, central Japan Oregon, USA.
Dimensions Ipm). — Based on forty-ihrec spéci¬
mens: length of apical spines 21 lo 65 (average 42);
length of basal .spines 65 ro 234 (average 106); diame¬
ter of incomplète .shclls 120 ro 230 (average 136).
Remarks
This species consists of four apical and four basal
spines with a loosc latticed shell. The basal spines
of .sonie spccimcnvS bave stout, slightiy curved,
long branches. Four or fivc branches diverge
medially lo distally along the basal spines. Two
shorter brandies are conical and diverge upward.
Two additional long stout, rod-like branches
diverge inw'ard. Diameter of branches slightiy
sniallcr less diai of basal spines. Each long brandi
beats two to four directional vspinules distally.
The spinales anastomose with each oiher for¬
ming a loosely reticulare shell. Some spccimen.s
posscs.s an almo.st complote single shdl. Surface
of the shell riigged due to minuic spinulcs; porcs
irregular in shape. Shdl is supported by ihc basal
spines and is incomplète apically MB eccentric-
ally situated or tangent lo the shell.
Pareniacnnia nakatsugawaensis was First described
by Sashida (1983) from black chert of the Kanto
664
GEODIVERSITAS • 1999 • 21 (4)
Spathian radiolarians
Fig. 8. — A-C, Archaeosemantis brevispinosa Kamata n. sp., A, holotype, DEUY'YK3617: B, paratype, DEUY-YK3627; C, paratype,
DEUY-YK3618: D, H. A. cristianensls Dumitrica; D, DEUY-YK3629. H. DEUY-YK3481; E-G. I-N, Parentactinia nakatsugawaensis
Sashida; E. DEUY-YK3538; F. DEUY-YK3479; G, DEUY-YK3545; I. DEUY-YK3509: J. DEUY-YK3603: K. DEUY-YK3486; L.
DEUY-YK3506; M, DEUY-YK3588; N, DEUY-YK3422. Scale bars: 100 pm.
GEODIVERSITAS • 1999 • 21 (4)
665
Kamata Y.
Mountains; later Sugiyama (1992) described this
species in greater detail and con.sidered it dia¬
gnostic of the Pn Assemblage of the upper Lower
Triassic. The shell ol this specics is well preserved
and shows variations in development in my
mater i al.
Parentactinia sp. A
(Fig. 9 B)
Figured SPECIMEN. — Figure 9B, TNK-R-08,
DEUY-YK3609.
Occurrence. — Rare in TNK-R-OS, Kuzu area,
central Japan.
Dimensions (pm). — Bascd on two Spccimens: Icngth
of long apical spines 100 to 160 (avetage 129): length
of short apical spines Icss rliaji 20; diarnerer of incom¬
plète shelis 140 10 175 (average 157); width of basal
nemisphere approximately 350.
Remarks
This species is composed of four apical and four
basal spines with an incomplète lauiced shcll.
Basal spines very long, ihick, rod-like, slightly
curved upward, and genily tapered distally. Loose
hemispheric shcll is supported by the four basal
spines.
Parentactinia sp. A is easily distinguished from
P. nakatsugawaemis by possessing very thick basal
and apical spines.
Parentactinia oktichichibtiensis
(Sashida, 1991)
(Fig. 90
Archaeothamnulus okuchichibuensis Sashida, 1991:
687,%. 5-10^ 14.
Parentactinia okuchichibuensis (Sashida) — Sugi)'ama
1992: 1213» fig- l6-2a, 2b. — Nagai & Mizutani
1993: pl. 1, %s 7. 8. - Kusunoki & Imoto 1996: 91,
%. 2 .
Occurrence. —Common in l*NK-R-08, 09, Kuzu
area, Tochîgi Préfecture. Mt. Kinkazan and
Minokamo City, Gifu Préfecture. Southern Kameoka
City, Kyoto Prcfcctiire. Kanto Mountains, Saitama
Préfecture, central Japan.
Remarks
Sugiyama (1992) transferred this species from
Archaeothamnulus to Parentactinia because it pos-
sesses two apical spines. In my material, this spe¬
cies also has two apical spines.
Family Entactiniidae Riedel, 1967
Genus Entactinia Foreman, 1963
Entactinia (?) tanumaensis n. sp.
(Fig. 9D-F)
Types. — Holotypc, Figure 9D. TNK-R-08, DEUY-
YK3500; paratvpc.s, Figure 9F.. TNK-R-OH, DEUY-
YK3522; Figuré 9F, TNK-R-08, DEUY-YK3643.
Etymology. — Tanumaensis is derived from Tanuma
’Fcnvn. Suidied section is located at the southeastern
part of Tanuma Town.
Occurrence. — Common in TNK-R-08, Kuzu
area, central Japan.
Dimensions (pm). — Based on five specimens: length
of main spines 50 to 110 (average 78.7); diameter of
sheli 80 to 100 (average 90).
DESaUPlION
Species with a well-developed latriccd shell with
five to six rod-like main spines and numerous bi-
spines. Latticed shell spherical with five to six
needle-like primary spines. Primary spines pos-
sess shallow groove.s proximally and strongly
taper distally. Spine length ncarlv cqual to dia-
mcccr of shcll. Shcll wall rachcr thick, pcnctratcd
by variably-sized rounded pores. Numerous
radial and very short bi-.spLnes arise Irom the
shell wall. Internai construction unknown.
Remarks
This species is similar to Entactinia nikorni
Sashida Igo (1992), but differs from the later
by possessing strongly tapered nccdlc-like prima¬
ry spines. This species is questionably assigned to
Entactinia because of the absence of three-bladed
spines.
Genus Entactinosphaera Foreman, 1963
Entactinosphaera (?) sashidai n. sp.
(Fig. lOA-D)
Types. — Holotypc, Figure lOA, TNK-R-08, DEUY-
YK3483; paratypes. Figure lÜB, TNK-R-08, DEUY-
\TC3490; Figure lOC. TNK-R-08, DEUY-YK3508,
Figure lOE, TNK-R-08, DEUY-YK3434.
666
GEODIVERSITAS • 1999 • 21 (4)
Spathian radiolarians
Rq. 9. — A. Parentactinia nakatsugawaensis Sashiüa, DEUY-YK3Ô93; B, Parentactinia sp. A, DEUY-YK3609; C. Parentactinia oku-
chichibuensis (Sashida). DEUY-YK3616:,D-F, Enlactinia (?) îanumaensis Kamata n. sp.. D, holotype, DEUY-YK3500; E. paratype.
DEUY-YK3522; F, paratype. DEUY-YK3643; G-M. Parentactinia karasawayamaensis Kamata n. sp.. G. paratype. DEUY-YK3654;
H. holotype. DEUY-YK3495: I, paratype. DEUY-YK3653: J, over View, paratype, DEUY-YK3650; K, paratype, DEUY-YK3653:
L, long apical and basal spines are preserved, paratype, DEUY-YK3657; M, over view, paratype, DEUY-YK3533. Scale bars:
100 pm.
GEODiVERSITAS • 1999 • 21 (4)
667
Kamata Y.
Ei YMOlonv, — Specics name, sashidai is nanied for
Associate Professor Kacsuo Sashida oF Tsukuba
Universiry in honor of his contriburion to the srudy of
Lower Tnassic radiolarians.
OccURRJiNCK. — Commun in TNK-R-08, Kuzu
area, central Japan.
Dimensions (pm). — Ba-sed on fivc specimens : shell
diameter, lüO tu 150 (average 128); length of main
spines, 120 to 210 (average 145).
DESCRJiniON
Test small, spherical, spongy wiih four to six
needle-like main spines. Shell wall of some speci¬
mens des'elops minute circular pores and humps.
Main spines taper to a point. Spines one to rwo
times diameter of shell. Internai structure un-
known.
Remarks
Entactinosphaera (?) sashidai n. sp. is similar to
E. chiakensis but diffcrs by possessing a spongy
shell.
Entactinosphaera chiakensis
Sashida àc Igo, 1992
(Fig. 101, J, L-N)
Entactinosphaera chiakensis Sashida & igo, 1992:
1302, fig. 14-1-7, 9. 10. 15.
Occurrence. — Common in TNK-R-08, Kuzu
area, central Japan. Phatthalung, Southern Peninsular
Thailand.
Remarks
This species consists of outer and inner shells
with four to six needle-like spines. Two shells are
connected by secondary spines.
Family Aci inommume Haeckel, 1862
entend. RJedel, 1967
Gcnus Sashida & Igo, 1992
Thaispbaem (?) igoi n. sp.
(Fig. lOE-H, K)
Types. — Hok.typc> Figure lOF, TNK-R-08, DEÜY-
YK3647; paratypes, Figure lOF., TNK-R-08, DEUY-
YK3637; Figure lOG, TNK-R-08, DEUY-YK3655;
Figure lOH, TNK-R-08, DEUY-YK3622; Figure
lOK, TNK-R-08, DEUY-YK3591.
EtvmOLOGY. — The species is named in honor of
Prof. Emeritus Hisayosht Igo who introduccd me to
the study of the Ashio Terrane.
Occurrence. — Common in. TNK-R-08, Kuzu
area, central Japan.
Dimensions (pra). — Bascd on nine specimens: cor¬
tical shell diameter, 14() to 180 (nverage 160); medul-
lary shell diameter, 50 to 60, length of main spines
100 to 180 (average 110); wall rhicl^ess 13-20 (avera¬
ge 15);. porc diameter less than 20.
DKSCRiniüN
Test consisting of a cortical shell with five to six
priinary spines and an inner medullary shell;
both shells are spherical. Cortical shell rhin-
wallcd, composed of circular lu subcirculaj* pores
with smail nodes at vertices. Inner shell mucb
smaller than outer .shell; diameter approxîmately
one ihird of ihe outer shell. Ckirricjl and mediil-
lary shells connected by six tbin, rod-like beams.
Four to fivc primary spines are ihick, thrcc bla-
ded, and taper distally; primary spines aligned
with internai beams. Length of primary spines
commonly cqual to diameter of cortical shell.
Remarks
Thuisphaera (?) igoi n. sp, resembles Entactino-
sphaem chiakensis Sashida & Igo, but differs from
il by possessing thrce-bladod and shorter main
spines. Thaïsphdera (?) igoi is also vety similar to
T. minuta Sasfiida Igo, but differs by huving
longer and thicker primary spines.
Family Pan rANELl.lUME Pessagno, 1977
Pantanellium (?) tnrgeum Sashida, 1991
(Fig. ljD,G^),L)
Paritanellîum (?) inrgetwi Sashida, 1991: 691, fig. 7-
9-14. — Nagai & Mizutani 1993: pL 3, fig. 4-6. -
Kamata 1995: fig. 6-6, 7,
OccURHENCt. — Rare in TNK-R-08, 09, Kuzu area,
Tochigi Prefocrurc, Mt. Kinkazan and Minokamo
City, Gifu Préfecture. Kanto Mountains, Saitama
Préfecture, central Japan.
RHMy\RKS
Test composed of an ellipsoidal to subspherical
cortical shell, a spherical medullary shell and two
rod-like bipolar spines. Well-prcscrved matcrial
668
GEODIVERSITAS • 1999 • 21 (4)
Spathian radiolarians
Fig. 10. — A-D, Bniactinosphaera (?) sashidai Kamata n. sp.. A, holotype, DEUY-YK3483, B. paratype, DEUY-YK3490; C, paratype,
DEUY-YK3508; D, paratype. DEUY'YK3434; E-H, K, Thaisphaera (?) /go/Kamata n. sp.; E. paratype, DEUY-YK3G37; F, holotype,
DEUY'YK3647, G, paratype, DEUY-YK3655; H. showing internai structure, paratype, DËUY-YK3622: K, paratype, DEUY-YK3591:
I, J. L-N, Entactinosphaera chiakensis SasU\6a & Igo; 1, DEUY-YK3492: J, DEUY-YK3520; L, DEUY-YK3421: M, DEUY-YK3433;
N. showing inner Shell, DEUY-YK3485. Scale bars: 100 pm.
GEODIVERSITAS • 1999 • 21 (4)
669
Kamata Y.
Fig. 11. — A*C, K, Crypfostephanidium longispinosum (Sashida). A, DEUY-YK3625; B, DEUY-YK3634; C. showing arch-like skele-
ton of aj, DEUY-YK3641; K. showing internai structure of A. L. D. and V spinules. DEUY-YK3633; 0. G-J, L. Pantanellium (?) vir-
geum Sashida; D. 0EUY-YK3474; G, DEUY-YK3614; H. DEUY-YK3649; I. DÊUY-YK3438; J, DEUY-YK3498: L. entarqement of D
showing cortical shell and beams, DEUY-YK3475; E, F, Pantanellium (?) sp. A; E, DEUY-YK3466; F, DEUY-YK3430. Scaie bars:
100 pm.
670
GEODIVERSITAS • 1999 • 21 (4)
Spathian radiolarians
shows the medullary shell connectée! to the corti¬
cal shell by numerou-s radia! beams (Fig. l ID, L).
Pantanellium (?) sp. A
(Fig. IIE, F)
Figured SPECIMENS. — Figure IIE, TNK-R-08,
DEUY.YK3466î Figure 11F, TNK-R-OS. DEUY-
YK3430.
Occurrence. — Rare in TNK-R-08r 09, Kuzu area,
central Japan.
Remarks
Test consists of a subspherical to spherical shell
with bipolar spines. Shell wall has very small,
irregular elliptical to circulât pores with well-
developed nodes. Bipolar spines very thin and
possessing slight grooves proximally.
Vantanellium (?) sp. A is distinguished from P. (?)
vïrgeum Sashida by having thin spines and a
spherical to subspherical shell with many pores.
Suborder NASSELLARIA Ehrenberg, 1875
Family Eptingiidae Dumitrica, 1978a
Genus Cryptostephanidium Dumitrica, 1978a
Cryptostephanidium longispinosum
(Sashida, 1991)
(Fig. 11A-C,K)
Spon^rtntepimmdium lon^pimmm Sashida, 1991: 694,
hg. 7-1-8.
? Tripocycliû japonka Nakaseko ^ Ni.shiiTiura, 1979 —
Blome €titl 1986, pl. 8.3, hg. 18.
Cryptostephanidium lungispinosum (Sashida) —
Sugiyama 1997: IKIS, hg. 13-1, 2. - Nagai &
Mhurani 1993- pl. 2, fig. l'3. - Kamata 1995: 28,
Hgs 6-16.
Occurrence. —Abundant in TNK-R-()8. 09, Kuzu
area, Tochigi Préfecture. Mt. Kinkazan and
Minokamo City, Gifu Prcfccuirc. Kanto Mountains,
Sairaina Préfecture, central Japan. Oregon USA.
Remarks
Studied specimens are quite similar to those
above listed for Cryptostephanidium longispino-
sum. Internai shell structure i.s well observed in
broken specimens (e.g., Fîg. 11-C, K) which
clearly show a MB, long apical and primary laté¬
ral spines, and the vertical and dorsal spines as
well as the sagittal ring.
Acknowledgements
I wûuld like to thank Professor Emeritus H. Igo
(Institutc of the Geoscience, University of
Tsukuba) for his valuable suggestions throughout
the course of tins study. 1 heartily thank Prof.
T. Koikc (In.stitLitc of Geology, Yokohama
National University of Yokohama) tor conodonr
identifications and important suggestions:
Associatc Prof. K. Sashida (Institutc of Geo-
science, University of Tsukuba) for his sugges¬
tions and critical readiiig of the manuscript; and
P. Dumitrica. S. Gorican. and A. Ohler for theic
rigorous review and variable comments and sug¬
gestions. Finally, spécial thanks to E. S. Carter
for her révision of English text of the manus¬
cript.
REFERENCES
Ando H., T.sukamoto H. & Saito M. 1991. —
Permian radiolarians in the Mt. Kinkazan Area,
Gifu City, central Japan, Btdletin Mizunami Fossil
Mi4sru}n 18; 101-106.
Blome C]. D. 1984. — Upper Triassic Radiolaria and
radtûlarian zonation from western Norih America,
Bullethi (if American Ptîleonwb^'^^b (318); 1-88.
Blomc G. D., Joncs D. l.., MurcTicy B. L. & Linicckl
M. 1986. — Géologie implicahons ofr^diolahan-
bearing Palcozoic and Mcsozolc-rocks frorn the
Blue Mountains Province, castern Oregon. U. S.
GeofogiadSuroty Profeskonal Paper 1435: 79-93.
Blome C, D. & Reed K. M. 1992. — Permian and
Early (?) Triassic radiolarian faunas from the
Grindsione Tcrranc, central Oregon. Journal of
Paleontofog^ 66 (3)! 351 383.
De Wever P., Sanfilippo A.. Riedcl. W. R. &: Gruber
B. 1979. — Triassic radiolarians from Greece,
Sicily and Turkey. Micropaleontohnn' 25 (1):
75-110.
Dumitrica P. 1978a.— Family Eptîugüdae n, Pam.
exdnct Nassellaria (radiolaria) with sagittal ring.
Paleonîolù^iey Dari de seama ale sedintelor
(Instirurul de géologie sic geofîzica) 64: 27-38.
— 1978b. — Triassic Palaeosceniidae and
Eniactinüdac from che Vicentinian AJps (Icaly) and
eastern Carpatliians (Rornania). Paletmtolùgie, Dari
de -seama ale sedintelor (Instituiul de géologie sie
geofîzica) 64: 39-54.
— 1982. — Middle Triassic spicular Radiolaria.
Revista Espanola de Micropaleontologia 14: 401-428.
GEODIVERSITAS • 1999 • 21 (4)
671
Kamata Y.
Foreman H. P. 1963. — Uppcr Dcvunian radiolaria
from (hc Hüron mcmbcr of the Ohio shalc.
MicropiiUoîiwlog;^ 9 (3)^ 267-304.
Goel R. K. !977. — Triassic conodoius froni Spiti
(Hiniachal Pradesh), India. Jourml of Paleontoîo^
51: 1085-1101.
Holdsworth B. K. 1977. — Paleozoic Radiolaria:
Stratigraphie distribution in Atlantic Borderlands:
167-184, /« Swain F. M. (cd.), Striiitgfuiphtc
Micropûltoritolopy vf Atlantic Basin and Borderlands.
EIsevief, Amsterdam.
Hori R. 1988. — Some characteristic radiolarians
from Lnwer Juras-sic hedded ehert of ihe Tnuyarna
area, Sùuihwcst Japan. Tramaerwn and Proceedings
ofthe Palaeonîolo^kal Society of japan^ New Sériés,
151:'^43-563.
— 1990. — Lowcï Jurxs.sic radiolarian zones of SW
Japan. Transaction and Proceedings of the
PaLieonlological Society of Japaru New Séries, 159:
562-586.
Ishida K., Yamashita M. & Ishiga II. 1992, — P/7*
boundary in pelagic sédiments in the Tamba Belt,
Southwest japun- Geologicat Rtpon of Shitnane
Universiey 11: 39-57-
Kamata Y. 1995. — Early 'Friassic radiolarians from
black sijiceous shale and black chert in the Kuzu
area of the Ashio Tcrranc, central japan. Fossih
(Palaeontological Society of japan) 59: 23-31.
— 1996. — l'cctonostratigraphy of the sedimentary
compicx itt ihc Southern part of ihe Ashio Tcrranc,
central japan. Science Reports of the University of
Tsukuha, Section B (Ceoiogicitl Science) 17: 71-107.
— 1997. — Reconstruction of cheri-ciastic sequence
of the Ashiü Terrane in rhe Kuzu area, central
japan. of Geolo^ual Society of]apan 103 (4):
343-356.
Kamata Y. Kajiwara Y. 1996. — Sulfrir isotopic
data from the Pcanian-Triassic boundary in a chert
sequence at Motegî, Gunma Prelecture, in the
Ashio Perrune, central Japan* I9-27> irt Noda H. bc
Sashida K. (ods), Profesior Hisayoshi fgo Commémo¬
rative Volume on geolog}> and paleontology of Japan
and Soinheast Asia. Gakujyursu Tosho, d'okyo,
japan.
Koike T. 1979. —• Biostrarigraphv of Triassic cono-
donts: 21-88, in Biôstwigraphy of Permian and
Triassic conodonts and hoiotlfunarf Si lentes in japan.
Professor M- Kannma Memorial Volume. Toko
Insatsu, Tokyo, japan.
— 1981- — Riosiraiigraphy ol Triassic conodonts in
japan. Science Report of ihe Yohohama National
Univmiîys Section fl, 28: 25-42.
— 1996. — Skeletal appaiatuses of Triassic cono¬
donts of Cornudina :113-120, in Noda H. &
Sashida K. (cds), Professor Hisayoshi Igo
Commémorative Volume on gcology ivtd paleontology
of Japan and Southeast Asia. Gakuj>aitsu Tosho,
Tokyo, japan.
Kozur H. & Mostler H. 1972. — Beitrage zur
Erforschung der mesozobehen Radiolarion. Teil 1:
Révision der Oberfamtlie Coccodiscacca HAEC-
KEL 1862 entend- und Bcschreibiing ihrer triassi-
schen Vertreter Ceolugiich-Palaontologische
Miireilungcn înnshruckl (8/9)r 1-60.
Kozur H-, Kaya O. & Mosrler M. 1996. — First évi¬
dence of Power to Pvliddie Scyrhian (Diencrian-
Lower Oicnekian) radiolarian.s Irom the Kxtrakaya
Zone of Nortlnvcsrern Turkey. Geologtsch-
Palaontologtschc Mitleilungen ïnnsbruck Sonderhand
4; 271-285.
Kusunoki I". &r Imoto N. 1996. — Early Triassic
(Spaihian) radiolarians in chert from Southern
Kamcoka City, Kyoto Ptefecture. Earth Science
{Chikyu Kagahul 5Ô: 184-188.
Kuwahara K., Nakac S. & Yao A. 1991. — Lare
Peimian “Toishi-rype'* .siliceou.s mudstone of the
Mino-Tambj hclt. Journal of Geological Sociciy of
Japan (12); 1005-1008.
Matsuda 7. 1985. — Latc Permian to Early I riassic
conodonc paleobioget»graphy in the “ I ethyan
realm”: 157-170, in NaJuzawy K. bi Dickins j. M.
(eds), The Tethy^-Her Paleogcography and Paleo-
hiogeogiaphy from Paleozok to Mcsozoic- Tokai
UnivTcrsi^ IVess, Tokyo, )apan.
MarsudaT. & Isozaki Y. 1982. — lEidiolarians around
the Tria.ssic-jura.ssk: boundary from ihc bedded chert
in che Kamiaso atea, .Southwest Japan. Appendix:
‘’Anisian"' radiolarians. l'rocccdiiigs of the First
Japanesc R.idiolari.in Symposium. News of'Osaka
Miaopaleontolu^stsSpécial Volume 5: 93'10l.
Maesuoka A. 1995a. — Jurassie and Low'er
Cretaccous radiolarian zonniioii in Japan and in rhe
we.srcrn Pacific. The IslandArc ^ {Ir. 140-153.
— 1995b. — Jurassic and Early Creiactous radiola¬
rian occurrcncc.s in japan and the Western Pacific
(OOP Sites 800-801). in InterRad Jurassic-
Cretaceous Woïking Group (cds), Middic furassic
tü Power Cretaceoui Radiolaria ol Teihys;
Occurrence, Systematics. Bkuhnmolog, Mémoires
de Géologie, Lausanne 23 : 937-966.
Matsuoka A, & Yao A. 1986. — A ncwly proposed
radiolarian zonation for rhe Jurassic of Japan.
Marine Micropaleontology 11: 91-106.
Nagai H. bc Mizutani S. 1993. — Early 7'riassic
radiolarians h-om ’Fsuzuya, Minükamo City» Gifu
Prcfcciure. ccniral Japan. Bulletin of Nagoya
Vnivermy, Furukawa Muséum 9: 1-23.
Nakascko K. & Nishimur.i A. 1979. — Upper
Triassic lEultoUria frnm Siniihwcsi j.apan. Science
Report, CloUege of General Education, Osaka
Vniversiry 28 (2): 61-109.
Nak.îzawa K., Ishibashl 7’., Kîniura P., Koike T.,
Shimizu D. bi Yao. A. 1994. — Triassic hiosrrati-
graphy of Japan bosed on varîous taxa, tn Guex j.
bc Baud A. (c'ds). Récent r3cvelopmcnt on Triassic
Stratigraphy, Mémoire de Géologie, Lausanne 22 :
83-T03.
Pessagno E. A. jr. 1977. — Upper jurassic Radiolaria
672
GEODIVERSITAS • 1999 • 21 (4)
Spathian radiolarians
and radiolarian biostrarigraphy of the California
Coast ranges. Micropaleontobgy 23 (1): 565-113.
Pessagno E. A. Jr., Finch W. & Abbott P. M.
1979. — Upper Triassic Radiolaria from the San
Hipolito Formation, Baja California. Micropaleon-
tology25 il): 160-197.
Riedel W. R. 1967. — Some new families of
Radiolaria. Geolo^cal Society of London^ Proceedings
1640; 148-149.
Sashida K. 1983. — Lower Triassic Radiolaria from
the Kanto mountains central Japan. Part 1:
Palaeoscenidiidae. Transaction and Proceedings of
the Palaeontologicnl Society of Japatu New Sériés,
131: 168-176.
— 1991. — Early Triassic Radiolarians from the
Kanto Mountains, central Japan. Part 2: Tran¬
saction and Proceedings of the PaLieontolo^cal Society
of Japan, New Sériés, 161: 681-696.
Sashida K. & Igo H. 1992. — ’l’riassic Radiolarians
from a limestone exposed at Khao Chiak near
Phatthalung, Southern Thailand. Transaction and
Proceedings of the Palaeontological Society of Japan,
New Sériés, 168: 1296-1310.
Siigiyama K. 1992. — Lower and Middle Triassic
radiolarians from Mt. Kinkaxan, Cifu Préfecture,
central Japan. Transaction and Proceedings of the
Palaeontological Society of Japan, New Sériés, 167:
1180-1223.
— 1997. — Triassic and Lower Jurassic radiolarian
biostrarigraphy in the siliceous claystone and bed-
ded chert units of the southeastern Mino Terrane,
Central Japan. Bulletin Mizunami Fossil Muséum
24:79-193.
Sweer W. C. 1988. — A quantitative conodont bio-
stratigraphy for the Lower Friassic. Sencken-
bergiana. Lethaea 69 (3/4): 253-273.
Sweet W. C-, Mo.shcr L. C., Clark D. L., Collinson
J. W. & Hasenmueller W. A. 1971. — Conodont
biostrarigraphy of the Triassic, in Sweet W. C. &
Bergstrom S. W. (cds), Symposium on conodont
biostrarigraphy, Geological Society of America,
Memoir 127; 441-465.
Tanaka K. 1980. — Kanoashi Group, an olistostro-
me, in the Nishihara area, Shimane Préfecture.
Journal of Geological Society of Japan 86 (9):
613-628.
Yamakita S. 1987. — Stratigraphie rclationship bc-
tween Permian and Triassic strata in the Chichibu
Terrane in eastern Shikoku. Journal of Geological
Society of Japan 93 (2); 145-148.
Yao A. 1982. — Middle Triassic to Early Jura.ssic
Radiolarians from the Inuyama area, central Japan.
Journal of Geosciences Osaka City University 25 (4):
53-70.
Submitted for publication on 3 June 1998;
accepted on 6April 1999.
GEODIVERSITAS • 1999 • 21 (4)
673
Radiolarian biostratigraphy of the Jurassic-Early
Cretaceous chert-clastic sequence in the Taukha
Terrane (South Sikhote-Alin, Russia)
Igor V. KEMKIN
Far East Geological Institute, Far Eastern Branch, Russian Academy of Sciences
Prospect 100-letiya Vladivostoka, 159, Vladivostok, 690022 (Russia)
fegi ©online, marine,su
Raisa A. KEMKINA
Far East State Technical University
Poushkinskaya Street, 10. Vladivostok, 690090 (Russia)
Kemkin I. V. & Kemkina R. A. 1999. — Radiolarian biostratigraphy of the Jurassic-Early
Cretaceous chert-clastic sequence in the Taukha Terrane (South Sikhote-Alin. Russia), in
De Wever P. & Caulel J.-P. (eds). InterRad VIII, Paris/Blerville 8-13 septembre 1997,
Geodiversitas21 (4) ; 675-685
ABSTRACT
This paper présents rhe results of biostradgraphic investigations of cherrv' and
cerrigenous cleposits from the Taukha Terrane. Twelve successive radiolarian
assemblages which correspond lo the upptr Pliensbachian-lowcr Toarcian,
lowcr-middlc Toarcian. upper Toarcian-middie Aalenian, upper Aalcniaiv
lower Bajocian, middic Bajocian, upper Bajocian-lowcr Bathonian, middle
Bathonian-lowcr Callovian, middic Oxfordian-Iowcr Kimmcridgian. middle-
upper Kimmeridgian, lower-middle Tithonian, upper Fiihonian, and lower
Valanginian-luwer Barrcmian deposiu ot ihe continuons section hâve becti
distinguished. Characteristics of the radiolarian assemblages are shortiy given.
RÉSUMÉ
Biostratigraphie à radioLiire d'une séquence siliciclastique d'àge jurassique-créta¬
cé inférieur dans la ïaukha Terrane (stul de Sikhote-Alin, Russie).
Cet article priJscntc les réstilrats d'une recherche biosirarlgrapliiquc réali,sc^c
sur des dépôts siliceux et dccritiqucs de la Taukha Terrane. Une douzaine
d’assemblages consécutifs de radiolaires a pu être reconnue dans les sédiments
d'une série continue ou Ton peut reconnaitre le Pliensbachien .supérieui-
Toarcien inférieur, le Toarcieii moyen inferieur, le Toarcien supéiieur-
Aalenien moyen, l'Aalénien supérieur-Bajocien inférieur, le Bajocien moyen,
le Bajocien supérieur-Bathonien inférieur, le Batlionien moyen-Callovien
inférieur, l’Oxfordien moycn-Kimmeridgien inférieur, le Kimmeridgien
moyen supérieur, le l ithonique inférieur à moyen, le I ithonique supérieur
et le Vaianginien inférieur-Barrémien intérieur. De brèves descriptions des
assemblages à radiolaires sont données.
MOTS CLÉS
Radiolaires,
Jurassique,
Crétacé inférieur,
Taukha Terrane,
Sikhote-Alin,
prisme d'accrétion.
KEYWORDS
Radiolaria,
Jurassic.
Early Cretaceous.
Taukha Terrane.
Sikhote-Alin,
accretionary prism.
GEODIVERSITAS • 1999 • 21 (4)
675
Kemkin I. V. & Kemlcina R. A.
INTRODUCTION
Cherty rocks are important in the geological
structure of the South Sikliote-Alin. They com¬
prise up to 35% ol the sections of Mesozoic
accretionary prisms, lhat are among the main
structural units of tlie région. Flowever, paleon-
tology of these chertJâ is, în most cases, poorly
studied. Cherts hâve bccn descrihed Irom separa-
ce samples that allowed them to bc datcd accura-
tely to a period or an epoch. The ranges of the
microfaunal species in them hâve not been tra-
ced, Also, elemcntary biostratigraphic subdivi¬
sion has noL been constructcd and thercfore,
comparison and corrdation of the varions species
could not be carricd out. l’hc study of Pcrmian
chcrt dcposits is rclaiivcly more succcssfuh sincc
biostratigraphic subdivisions and zonal scalcs
hâve been proposed (Rudenko 1991), Sonie local
sections ofTriassic (Vololchin et ai 1990; Bragin
1991; Smirnova &: Lepeshko 1991) and Early
Jurassic cherts (Kemkin 6c Golozoubov 1996)
hâve also been studied, and laycrs with ddîcrcnt
microfaunal assemblages hâve bccn distingua
shed. The younger cheny formations hâve not
been broken down into clementary biostratigra¬
phic subdivisions with the exception of preÜmi-
nary data on Gorboushinskaya suite (Bragin
1993). Given below arc the results of the micro¬
faunal study of rhe most complète chcrt sections
and overlying terrigenous dcposits ot the Tauklia
Terrane, exposed on rhe Iclt bank of Roudnaya
River (south-east of Dalnegorsk Town).
GEOLOGICAL SETTING OL THE REGION
The Dalnegorsk Région is situated with in the
Taukha Terrane (Fig. 1), an Early Cretaceous
accretionary prism (Khanchuk étal. 1989;
Golozoubov et al. 1992; Kemkin ôc Klianchuk
1993). rhe prism structure is a complicated
combination of different-fades and different-age
formations. The Taiikba Terrane is composed uf
a repeated alternation of turbidite and olisiostro-
nie dcposits constiiuiing the matrix, and diffe-
rent-age accreted fragments of mostly
paleoceanic, rarely paleocontinental formations.
Section of the prism can be visualized as a
“multi-layered cake”, where relatively young
dcposits of rhe matrix alternate with more
ancient accreted formations.
The accreted fragments comprise extensive (up
to several cens of kilometers long) plates as well
as blocks and lumps of varying sizes within the
matrix of oli.sto.strome. Both plate and matrix
rocks were crurnpied together into assymetric
north-east irending iolds wiih a south-east ver¬
gence. Sonic plates can bo 500 m thick. Such a
thickness is a resuit of the tcctonic répétition (3-
5 rimes) of some parts of accreted formations. A
true thiclcness, for exampic, of dierty rocks does
not exceed 100 m. The contacts between plates
of the accreted fragments and the matrix (if they
are not broken by later deformations) afo .sedi-
mentarys distinct in litholog}'. Large places usual-
ly ûvcriic the olistostrome.
Baleoceanic accreted formations are represented
by siliceoûs (fragments of abyssal plains) and car-
bonaceous (fragments of paleoguyots) faciès.
These faciès are composed of rypîcal bedded-
cherts, daced from their dilfercni plates by
Middic Carboniferous to Lare Jurassic âge
(Rybalka 1987; Khanchuk et al. 1988; Bragin et
al. 1988; Rudenko & Panasenko 1990; Voiokhin
et ai 1990; Bragin 1993), and recl-lorming
limc.stones laying on high-litaniiiin alkaline
basalts. l'hc âge of the limcsione ba.sa] layers in
different plates and blocks ranges from Late
Dcvoiiian to Late Triassic (Nikitina 1971;
Vorobeva et ai 1978; Bersenev 1986; Budi et al.
1986).
The fragments of paleocontinenral formations
are repre.sentcd by blocks and lumps oi shallow-
marine (shelf) deposîts containing Mîddle-Late
Iriassic macrofauna, and by places of relatively
deep-sea Permian rocks composed of sandstones
and siltstoiies flysch alternation (Kemkin 1996).
RADIOLARIAN ASSEMBLAGES
Detailcd study of cherry formations from the
Taukha Terrane along rhe left bank of rhe
Roudnaya River (Dalnegorsk Town area) bave
bccn carricd oui. Phe cherts and overlying tuibi-
dites of the matrix form four tectonically repea¬
ted plates (Eig. 1). The most représentative
676
GEODIVERSITAS • 1999 • 21 (4)
Jurassic-Early Cretaceous biostrarigraphy
Fig. 1. — Tectonic scheme of the Sikhote-Alin Région and geological map of the investigated area. 1. Early Cretaceous olistostrome
formations of the accretionary prism matrix; 2. plates and blocks of Triassic-Jurassic cherts; 3, turbidite deposits of the matrix;
4. plates and blocks of Mîddle-Lale Trîassic limeslones; 5. high-tiianium alkaline basalts undertying limestones; 6. Early Cretaceous
shallow-marine (shelf) deposits; 7a, Late Cretaceous volcanites; 7b, intrusive formations; 8, Ouatemary deposits; 9, dislocations with
a break in continuity: 10. éléments of rock occurrence (sirikes and dips).
secrion of the cherts was discovered in the second
tectonic plate (l‘i^. 2) whcre they make up iis
lowcr portion. Wîthin the exposure^ tlic rocks
show monoclina] dtp lo chc soucheasc (dip azi-
muth, 130-140". angle 70-80"). l he cherts hâve
bedded texture thaï is cau-scd by thin (1-3 xnm)
clayey interbeds. rhickness of the cherr beds
varies from 1.3-2 to 3-5 cm, more rarely 7-
10 cm. The rocks arc broken by a séries of sicc-
ply-dipping, discoiuinuous dislocations of
northeast and submcridtonal uending, paraJlel or
at angle ro bedding. In the upper part of the sec¬
tion, the cherr>' formations change.s ro rerrige-
nous deposits, cherry mutlstoncs, nuidstones,
muddy siltstones and, lhen, flyscli alternation of
sili.stones and .sandstoncs that grade into massive
sandstoncs. Unloriunaiely, the comaci of cherts
and terrigenous rocks al tliis expo.sure Is œnipli-
cated by a laull, a.s cvldenced by ihe pre.sence of
boudinaged fragmenl.s of cherts in the contact
part of the cherly mudstone.s. However, in oihcr
places (for exainple, Korcy.skaya River area) we
observe a contormablc and graduai transition.
The conformable and graduai transition between
cherts and lerrigenous deposits is very important
bccausc ic indicates a smooth change of environ ■
ment of sédimentation from pclagic to marginal-
continental (cherr accumulation is cbanged at
the begining by the accumulation of fine and
then coarsc ceitigcnous matcrial). This évidence
fixe.s, ihus, the moment of approach of a given
pan of ihc oceanic plate to the zone of accrcüon.
AJl ihrcc Triassic and Lowcr Jurassic epoch.s have
bcen identificd in the chert units (Vololdiin et al.
1990: Bragin 1991; Bragin 1993) Accorcling to
Bragin (1993), Middie Jurassic is nor represenred
in lhe section due to the essentiel stmiigraphical
break in the Middie Juras.sic titne. The available
data on the Lace jurassic age of che cherts (Bragin
1993) arc not quitc correct, a.s tlic Latc Jurassic
Radiolaria have bcen separalcd 1mm the cherty
mudsiones bclonging to a transitional chert-io-
terrigenous packet. Lhe age of lhe tetrigenous
portion of the .sectioti has bcen determineci as
middie filhonian-Valanginian (Bragin 1993).
ïhe Triassic pan of the section is detaily subdivi-
ded into detailed zones by conodonts and radio-
larians (Volokhin étal. 1990; Bragin 1991) and
GEODIVERSITAS • 1999 • 21 14)
677
Kemkin I. V. &L Kemkina R. A.
0 25 50 m
X80
Fig. 3
X75"
cherty
mudstone
turbidite
Fig. 2. — Geological scheme illustrating the structure of chert-terrigenous successions of the second tectonic plate along the
Roudnaya River (Dalnegorsk Town).
is not discussed in chis paper. In this scudy the
Jurassic parts of the chetts and terrigenous rocks
hâve been sampled in great detail. l’hc micro-
faunal study show that the cherty beds of the
section contain Early, Middie and Late jurassic
radiolarians. The Lace Jurassic and Eaijy
Cretaceotus ones were fraind in terrigenous depo-
sits (Figs 3, 5). Aliogether, tvvclve successive
radiolarian assemblages have been distinguished
(Figs 3, 4). Short descriptions of thèse assem¬
blées are given below in ^scending order.
1. Parahuium longiconicuni assemblage was found
in cherts of decp-grcy to black in colour (samples
P-21, P-20, P-19). Spécifie composition of rhe
assemblage is not abondant (Fig. 3). This assem¬
blage conrains nassellarians such as Pambsuum^
Canoptum. Tricolocapsa and Parvteingula and
spumellarians — Tnactoma. Age diagnostic species
is Parahsuum longiconicum. l’hc geological range
of the assemblage is assigned to PHcnsbachian-
early Toardan. The lower âge boiindary is assu-
med to bc late PliensbacPiîan according to the
First appearance of the species-index (Sashida
1988). The upper boundary is restricted by the
lower onc of the upward following assemblage.
The as.scmblagc is compatable in âge and spécifie
composition (Fig. 4) with the assemblage of
Pamhsuum tiikarazawiiense zone (Sashida 1988)
and subzone 4 oïPamhsuum simplum zone (Hori
1990; Marsuoka et al. 1994), and lower part of
Trillus elkhornemis zone (Marsuoka 1995) repor-
red from Japan.
2. Hsnum altUe assemblage wa.s extracted Irom
violet-dccp-grey cherts (samplcs P-18, P-17).
The assemblage characterized by a relative diver-
sity of species (Fig. 3), with a prédominance of
Parahsuum and Hsimm. Some spumellarians such
as Triactoma and others are also found here. The
geological âge of rhe assemblage is early
Toarcian-middle Toarcian. 1rs lower boundary
was defined by the appearances of Hsuum ahilcy
Hsuum transiemisy Parvidngida nanoconica rhat
Jiavc been noted since early Toarcian (Hori &
Orsuka 1989; Hori 1990). riic upper boundary
is controlled by the upper assemblage and the
last appearance of Parahsuum longiconicum spe-
678
GEODIVERSITAS • 1999 • 21 (4)
Jurassic-Eariy Cretaceous biostratigraphy
cies (Sashida 1988). Age and the spécifie compo¬
sition of this assemblage are comparable wirh
thar of Mesosaturnalis hexagornis zone (Hori
1990; Matsuoka et al. 1994), and partially corré¬
lative wich rhe assemblage of Hsuum minoramm
zone (Sashida 1988) and upper parts ol Trillus
elkornensis zoai: (Matsuoka 1995) aiso reported
Irom Japan.
3. Purahsuum grande assemblage was foiind in
the identical violct-decp-grcy cherts (samplcs
P-16, F-15, 86-15). ’l'his a.ssemblage contains
abundant and diverse rcpic.sentacivcs ol nassclla-
rians such as Parahsuutn, Hsuunu and Parvi-
cingula, and spumcllarians such as Emiluvia.
Tetraditrimay Archacospongoprtouinu Xiphostilus
and others (Fig. 3). Age diagnostic species are
Parahsimm grande, Hsuum matsuôkai mxA Hsuum
hisuikyoense. The âge ol the assemblage is late
Toarcian-iniddie Aalcnian. According to the first
appearance of Parahsuum grande (Hori 1990),
the older age boundaiy was assumed. The top is
limitcd by the lower boundary of the upper
assemblage. The assemblage is comparable with
that of Parahsuum grande zone, and the lower
portion of Hsuum hisuihyoense zone (Hori 1990;
Matsuoka et ai 1994), as well as Laxtorum juras-
sicurn zone (Matsuoka 1995). AU zones bave
been identified in Japan.
4. Parahsuum hiconocosta assemblage was found
in deep-grcy cherts (samplc P-14). Parahsuum
and Hsuum predominate among the représenta-
tives chat are noi relatively numerous in this
assemblage (Fig. 3). l'hc gcological age of the
assemblage is late A;denian-early Bajocian. The
lower age boundary corresponds to the firsi
appearance of ihe spccies-indcx (Baumgartner et
ai 1995). fhc top is controlled by the lower
boundary oF the upper assemblage. The assem¬
blage is correlated with that of the Hsuum hisui-
kyoeme zone, lower part of the Unuma cchinatus
zone (Matsuoka et ai 1994), and upper parts of
the Lvctnruni jurasstcum xisnc (Matsuoka 1995).
5. Hsuum mirahundum a.ssemblagc was cxcractcd
from bluc-grcy cherts (samplcs P-13, P'12,
P-1 1). Thi.s as.scmblagc shows relative spécifie
diversity. Among the représentatives, nassella-
rians such a.s Hstiinriy Pnrahsuum, ParvicinguLt
and Tricolocapsa, as well as spumellarians ie
Emiluvia, Tripocyclia and others are prevailing
(Fig. 3). The geological range ot the assemblage
is assumed to be early-late middle Bajocian. The
lower boundary was determined by the first
appearance of Hsuum mirahundum (Baum-
gartner et al. 1995). The upper boundary is rcs-
rricced by the last appearance of such specics as
Parahsuum natorênsey Parahsuum grande,
Emilutàa splendtda. The boundary corresponds
to the cncl of middle Bajocian (Hori 1990:
Baumgartner et al. 1995). This assemblage is
comparable in age wirh that of the middle part
ol the Unuma echinatus zone (Matsuoka et al.
1994) , and lower parc of rhe Tricolocapsa plica-
rum zone (Matsuoka 1995) distinguished in
japan.
6. Hsuum matsuokai assemblage was found in
liglu-grcy chert.s (samplcs P-10, P-9, P-8).
vSpecifîc compositions of the a.sscmblage Ls cha-
racterized by the essential diVersiry of specics.
Among them, chcrc are nasscllarians: Hsuum-,
Transhsuuniy Parahsuum, Arhaeodiciyomitra,
Tricolocapsa, and spumcllaiians such as Aiesos-
aturnalh, Tritrahs, Ictraditrima and others
(Fig. 3). Age diagnostic sptccics are Tritrahs cas-
maUaemis and Hsuum matsuokai. The range of
the assemblage was dctccimned as. lato Bajocian-
early Baihonian. The lower age boundary is
based on the absence of charactcristic specics of
the end of middle Bajocian (see assemblage 5), as
weli as the presence of Tritrahs casmaliaensis cha-
racteristic of l;ue Bajocian (Ranrngarmer et al.
1995) . The upper boundary was determined by
the last appearance of Hsuum matsuokai that had
completed it.s évolution in the carly Baihonian
(Baumgartner et al. 1995). This assemblage is
correlated with that of the upper parcs of Unuma
echinatus et al 1994) and Tiicolocapsa
plicarum (Matsuoka 1995) zones.
7. Triactormr tithaniauum assemblage was (ound
in greenish-grey chert.s (sample.s P-7), 10 cm
below the bottoin ot the cherty niudstoncs.
Tricolocapsa and Stichocapsa predominate among
the représentatives that are not relatively nume-
TOUS in this xssemhlage (Fig. 3). The geological
age of the assemblage is identified as middle
Bathonian-early CaJlovian. The lower age boun¬
dary corresponds to the upper boundaty of the
previous assemblage and to the first appearance
of Triactoma tithonianum (Baumgartner et al.
GEODIVERSITAS • 1999 • 21 (4)
679
Kemkin I. V. & Kemkina R. A.
1995). The upper âge boundary is restricted by
thc last appearancc of Tntmhsuuni medium
(Baumgartner et al. 1995). The assemblage is
comparable in age to that of thc GtiexelLt nudata
(Matsuoka et al. 1994), and the Tricolocapsa
conexa (Matsuoka 1995) zones.
8. Archaeodictyomitra minoeiids assemblage was
cxcracted Irom the boudinaged fragments of cherts
(sample P-6) in thc contact zone of cherts and
cherry mudscones. This radiolarian assemblage
concains mainly nasseilarians and is characterized
by rich spécifie diversity. They are ArchaeU'
dictyomitra. Xitus, Mirifusus, îhtmm\ Sethocapsti-,
PseudodictyoMitra^ Stichaatfsu and others. The
range of the assemblage is middie Oxfordian-early
Kimmeridgian. Assumed lower age boundary is
from the first appearance of the species-index
(Baumgartner et al. 1995). The upper boundary
corresponds to the last appearance of Haliodicta
hojnosi (Baumgartner et al. 1995). The assemblage
is comparable in age with that of the upper parts
(if the Stylocapsa spiralis zone (Matsuoka 1995)
described in Japun. It should be noted (that wichin
the assemblage) ihere are several morphological
forms that are more common in Early Cretaceous
radiokrians (Figs 3, 5).
9. Pseiidodictyomitru okamurai assemblage was
found in green thecty mudstones (samplcs P-5,
86-14). The assemblage aisu contains numerous
and diverse radiolarian species (Fig. 3).
Prédominant ones arc Archaeodictyomitra and
Pseudodictyomhrâ. The range ot the a.ssemhlage is
middle-latc Kimmeridgian. The oldcr age boun-
dar)'^ is somewhat tcnlarive, bur the data on the
previous assemblage hâve been taken into
account. The upper age limit is restricted by the
last appearance of Pseudodictyomitra okamurai
(Baumgartner et ai 1995). The assemblage is
680
GEODIVERSITAS • 1999 • 21 (4)
Jurassic-Early Cretaceous biostratigraphy
4-0
ês-2S|S.S&
^ * §1*1 i 1 B
■So|p'®|aE
î? I « I
IÊI i -I t I I
“ §|ë
B
5 *
B
5>^fê
PI
Parahsuum (ongiconicum
Hmi
Hsuum mirabundum
Po
Pseudodictyomitra okamurai
Ha
Hsuum attile
Hma
Hsuum malsuokai
xg
Xitus gifuensts
pg
Parahsuum grande
Tt
fnactoma tithonianum
Pc
Pseudodictyomitra carprtica
Ph
Parahsuum hiconocosta
Am
Archaeodictyomitra minoensis
C sp. Cecrops sp.
Fig. 3. — ütho- and biosiratigraphical column of the Jurassic portion of the chert section and overlying cherts terrigenous deposits,
enclosing radiolarian species and assemblage range aiong the section.
comparable in âge with char of Hsmwi maxwclli
zone (Mat.suoka 1995). Morphological features
of some speciês are more common m the Early
Cretaceous forms. 'l’hey aie ? Pscifdodictyomitm
nttdu and ? Pieudodicîyoftiimi Uptoconioi (f igs 3.
5) and also chatacteristk In this assemblage.
10. Xitus gifiiensis assemblage was also found in
green cherty inudstone.s (samples P-4, P-3).
Archaeodiîyoynitm and Xïtm prcdominaie among
the numerous radiolariuns of ihis assemblage.
vSomc spumellarians such as Tritrabs, Emiluvia
and PafUdttellium arc also found. The geologkal
range of the âssemblage is assumed as early-
middle Tichonian The lower âge boundary cor¬
responds 10 the flrst appearance Xitu^gijvensh
(Baumgartner et td. 1995). The upper boundary
is resiricied by the lower boundary ol the upper
assemblage. The assemblage is correlated with
that of the Pseudodktyomitra primitixm zone
(Maisuoka 1995) and also contains some species
similar to Psettdodictyomiti'a mida and Pseudo-
dktyonùtm leptoconica.
11. Pseudx)d\ctyomttm carpatica assemblage was
found in black mudsrnnes (samples P-1, 86-
16) very close to the contaa with green cherty
mudstoncvs. The assemblage is represented by
numerous and diverse radiolarians related to the
end of Jurassic and beginning of Cretaceous rime
(Fig. 3), Nassellarians such as Pseiulodictyomttm,
Archaeodictyoniitm^ Xitusy Thnnarla, Sethocdpsd
predominate. Spumellarians such as Tritrnhs,
Emiliivin, PantaneWtum and othcis arc also
contained. ITe range of ihc assemblage is latc
‘rirhonian. The lower âge boundary corresponds
to die iifsc appearance ol iheudodicvyomitrci car-
patica (Matsuoka 1992). The upper boundary is
GEODIVERSITAS • 1999 • 21 (4)
681
Kemkin I. V. & Kemkina R. A.
Age
Radiolarian zones and assemblages
Sashida1988
Hori 1990
Matsuoka
étal. 1994
Matsuoka
1995
This paper
Bar
Hau
Val
Ber
Trt
Kim
Oxf
Cal
Bat
Baj
Aal
Toa
Pib
Acanthodrcus canneîus
Ceavp^
Cecrops sp.
Pswàdodicyomfim
carpsGca
PsBiJdodtctyomitra
Pseutiodic^mHfa
_ _^9rpaftca
Xîtus gifuensis
Hsuum maxY/eili
Pssudi
Stylocapsa (?) spiralts
ArchaeodKtyomnrB
mlnoensts
GuexeHa nudata
Tncùtocapsa conaxa
Tr^ktonia tAhontantim
Unuma echinatus
Tricofocapsa p/*camm
Laxtorum (?) jurassicum
Hsuum hisuiHyoensa
Hsuum Msuikyoensa
LaKfofWTJ (?)/urassjcwm,
Hsuum matsuoka)
Parghsuum hiconocosla]
’HsiJum mlnoraïun
. Parahsuum
takarazawaense
Parahsuum grande
isosatumaksh BxtiODnôi]
PerHhsuum stmplum IV
ft gxBgonujj
rrillus eikhomansis
Rsüum aÏÏHS“
Pàrahufiun simpium
Parahsuum stmphm NI
Parahsuufn simplum
jParahsuum longicanicum
Parahsuum slmolum
Fig. 4. — Corretation table of Taukha Terrane and Japanese radiolarian zones and assemblages.
determined by the last appearance of
Archaeodictyomitra whioefisisy Ristola altissima
and Protunuma japonicus (Baumgartner et al.
1995). This assemblage contain.s the species
similar to Pseudodictyomitra nudti and Pseuda-
dictyomitra leptoconica. The assemblage is compa¬
rable in âge vvith tliar of the lower part of
Pseudod'tctyomitrâ varpatica zone (Matsuoka
1995) establishedin Japan.
12. Cecrops sp. assemblage was distinguished in
the black mudstoncs (samplc P-0) that is 40 m
above the horizon P-1 of the section. The assem¬
blage is charactcrizcd by diverse and abtindant
radiolarian species (Fig. 3). Most of tiiem hâve a
wide age intervni. However, rhe présence of
Cecrops .sp. and Sitchocdpsct ex. gr. altiforamimt
allows to déterminé range intcrval of the early
Valanginian-carly Barrcmian (Baumgartner et al.
1995). This assemblage is comparable in age witli
that of Cecrops septemporattis zone and lower parts
oïAcanthocircus carinatus uovïQ (Matsuoka 1995).
CONCLUSION
We hâve carried out detailed biostratigraphical
investigations. Twelve successive radiolarian
assemblages which characterize different-age
depo.sits of the cheri-iurbidicc section were dis¬
tinguished. Liglit assemblages arc included in the
chert portion ranging ftom late Pliensbachian to
early Kimmcridgian. le indicaccs that the chert
accumulation proces.s in Jurassic rime was conti-
nuous. The ptesence of Middie Jurassic radiola-
rians (of ail stages) di.spuie ihe presence of any
significant stratigraphical brealc in Jurassic tune,
dh WiLs previûusly reporicd (Btagin 1993). At the
samc time, somc chert portion, corresponding to
middlc CaJlovum-early Oxfordian time interval,
as wcll as some ol cheriy mudstones is absent
from chc section as a fcsult of later deformations.
In rbc vransitional packet of cherry mudstones
and in the terrigenous rocks, we hâve cstablished
cwo radiolarian assemblages in each, indicaring
Kimmeridgian-Tithonian and late Tichonian-
Early Creiaceous age of ihese dcposics correspon-
dingly. Tlicse data suggesr that one paleogeo-
dynantie environment of sédimentation was
rcplaced by anocher ai rhe end of Jurassic time,
and thaï chert accrccion took place in Early
Crctaceous time.
Cheriy formations analogous in age arc known
today among different accretionary prisms of the
Pacific margin of Asia, from Koryak plateau
682
GEODIVERSITAS • 1999 • 21 (4)
Jurassic-Early Cretaceous biostratigraphy
F«g. 5. — Some Jurassic and Early Cretaceous radiotanans from cherl-terrigenous seQüer>ce of Taukha Terrane A. Pârahsuum
cf. iongicomcum Sashida, P-17: B, H&uum a/We Hori & OtsuKa. P-IB. C. Patahsuum grande Hon & Vao, P-15; D, Hsuum sp. A.
P-14; E. Parahsuum cf. Uiconocosia Baumgarinef & De Wever. P-14. F, Hsuum cf. tmrabundum Pessagno â Whalen, P-13:
G. Hsuum matsuoka/ Isozaki S Mats^xia. P-8; H. Triacîoma Mhonianum Rust. P*7; I,. Trîtrâbs cf casmaliaensis (Pesagno). P-9,
J, Transhsuum medfum Takemnra, P-8: K. Archaeodictyotvnra minoensis (iVlizuiani). P*6: L. Hatiodictya (?) cf. tioinosi Riedel &
Sanfilippo, P-6; M Pseudodfctyomsira okamurai Mizutani^ P-6; N, P, ? Pseudodictyomitra aff. Nuda Shaat; N, P-6; P. P-4i
O. ? Pseudodictyomitra atf. Leptoconica (Foreman), 86-14, Q, R, XiTus gifuensrs Misulani, P-3; S, Tritrabs simplex Kîto & De Wever,
P-10; T, Stichocapsa ex gr. alîiforamina Tumanda, P-O; U, Pseudodictyomitra carpatica (Lozynyak), P-2; V, Cecrops sp., P-0. Scale
bars: 100 pm.
GEODIVERSITAS • 1999 • 21 (4)
683
Kemkin I. V. & Kemkina R. A.
(Vishnevskaya & [’ilutova 1996; Kemkin et al.
1996 and oihcrs) lo the fapanesc Islande (Hori
& Otsuka 1989; Hori 1990; Tcliikawa et al.
1990; Matsuoka & Yâo 1990; Mizutani étal.
1990; Matsuoka et al. 1994 and others)* This
face togecher with data on the prism âge is évi¬
dence ol the existence of a single acerctionary
System along the western boundary of the
Paleopacific in Late Jurassic^Early Crctaccous
time and ailows as to ourline general tendencies
of geological évolution of the Far East région at a
given rime interval.
It is interescing to note thaï our scudy has reco-
gnized among radiolarian assemblages (since
Oxfordian-Kimmeridgian time) the prcsence of
separare specimens widi morphological Kacurcs
characreristic in Teihys area for Early Crctaccous
(Valanginian and younger) forms. Thcy are ?
Pseudodinyomitra aff. ^uuia and ? Pseudo-
dictyomitm afl. lepumica range intervals which,
according to the currcntly available data
(Baumgartnci et al. 1995) arc early Valanginian-
Aprian and lare Barremian-Aprian, correspondin-
gly. It’s likcly rhat for diOerent rcason.s, ihese
morphological fcacures in radiolarians of the
Paleopacific area began Lo develop nuich earlier
rhan in rhosc of the Tethys area.
Acknowledgements
The authors express ihanks to Dr. S. Kojima
(Nagoya Univcrsicy, Japan) and Dr. Y. Taketani
(Fukushima muséum, Japan) for giving us an
opportunity to takc picrures of radiolarians
under scanning électron microscope, and Dr.
V. S. Rudenko (Far Easî Geological Institure. Far
Eastern Branch. Russian Acaemy of Sciences,
Russia) for consultations and discussions.
We are grateful to Dr. M. Faure (France) and Dr.
R. Ishiga (Japan) fo-r critical reading of the
manuscript and their constructh^e comments.
Spécial thanks are duc to Di. F. Spiller C. P.
(University ol New England Armidale, Australla)
for révision of the English text.
REFERENCES
Baumgartner P. O., O’Dogherty L., Gorican S.,
Urquhart £., Pillevuit A. & De Wever P. (eds)
1995 — Middle Jurassic to Lower Crctaccous
Radiolaria ol Tethys: Occurences, Systematics,
Biochronology. Mémoires de Géologie^ Lausanne,
23, ll72p.
Bersenev 1. 1. (cd.) 1986. — New tUîa on stratigi'aphy
oj the Primorye sector of the Jijpan Seo région.
Preprint. Vladivo.srok, 48 p. [in Russi.an|.
Bragin N. Yu 1991. — Radiolaria and Power
Mesozoic strata of the East LISSR. Acadermya Nauk
SSSj Moscow: 469. 125 p. (in Russian]-
~ 1993. — Straiigraphy of Jurassic-Î.owcr
Crctaccous chctty-terrigenoiis deposits of Primorye
(Gorbushinskaya suire). Stratigjaphy Geological cor-
relatwn, Moscow I (2); 93-9. [in RussunJ.
Bragin N. Yu. Olcinilc L. M. & Parnyakov V. P.
1988. — Siratigraphy and structure ol the repré¬
sentative section of Gorbushinskaya suite in
Mesozoic of Primorye. Izvestiya AN SSSR^ Seriya
Gtologieheskaya^ Moscow 2: 23-34 [in RussianJ.
Burti T. V., Zhamikova K. K. & Buni G. I. 1986. —
Trias.xic deposits on the Nezîidanka River right
hank (Primorye). Sovetskaya Geolog'tyay Moscow 7;
SO-58 [in Russian).
Golozubov V. V., Khanchuk A. 1., Kemkin I. V.,
Panchenko 1. V. & Simanenko V. P. !992. —
Taukha and Zhurarlevka terranes (South Sikhote-
AHn). Madivostok, 83 p, |in Russian).
Hori R. 1990. — Power Jurassk Radiolarian zones of
.SW Japan. TrunsactiorîS aud Proceedings of the
Palvonîological Society of Japon, New Séries, Tokyo
159:562-586.
Hori R. & Otsuka F, 1989. — Early Jurassic
Radiolarians from rhe Mt. Norikuradake Area,
Miiio Tertane, Central ] ApÀn. Journal ofGcosciences^
Osaka City Lhiotnity, Osaka 32: 175-199.
Iclukawu K.. Mizutani S.. Hara !.. Hada S. bc Yao A.
(cds) 1990. — Prc-CtcUccuus' Terranes of Japan.
Piihlitatjou oj^JGCP Project: Pir-furussic Evolution
üfEtmem Osaka 224, 41 3 p,
Kemkin 1. V. 1996. — New' data on the geology and
âge of the Koreiskaya River area (South Sikhote-
Alin), The liLirid.^rc, Tokyo 5; 130-139.
Kemkin &c Golozubov V. V. 1996. — The firsc
finding of the EarJy Jurassic radiokitia in cherry
allochrons of the Samaika accreiionary prism
(South Sikhote-.AJin). Tikhookeanskaya GeùlogiyOy
Khabarovsk 15 (6); 103-109 (in Russian).
Kemkin 1, V. ôf Khanchuk A. 1. 1993. — The lir.si
data on ihc Early Creraceuus accretionary complex
in rhe Ghernaya River ha.sin (Soiuh Sikhote-AIin).
Tikhtwkeanskaya Gcçlogiya, Khabarovsk ]: 140-143
[in Russian].
Kemkin P V.. Palandjan S. A. & Chekhov A. D.
19%. — vSubstamiation of rlie uge of chtrt)'-volca-
nogenic complexes ol Povorornyi Cape in the
Peii?Jia-I*ekulnei ophioHtic belt (Norch-East Asia).
Tikhookeanskaya GenlogiyUy Khabarovsk 15 (5):
69-78 [in RussianJ.
Khanchuk A. P, Kemkin I. V. & Panchenko I. V.
684
GEODIVERSITAS • 1999 • 21 (4)
Jurassic-Early Cretaceous biostratigraphy
1989. — Geodynamic évolution of' thc South Far
Easc in Middle Paleozoic-Early Mcsozoic, in
Shouldiner V. 1. (cd.), Pacific margin of Asia,
Geology^ Nauka, Moscow 1: 218-255 [in Russian].
Khanchuk A. I., Panchenko I. V. & Kemkin I. V.
1988. — Geodynamic évolution of Sikhote-AUn and
Sakhaiin in Latv Paieozoù and Mesozoic. Far
Eastern Branche SSSR Acadcmy of* Sciences,
Vladivostok, 5(i p- [in Russian].
Matsuoka A. 1992. —Jurassic and Early Cretaceous
Radiülarians from I.eg. 128, Sites 800 and 801,
Western Pacific océan, in Larson R. L., Lancelot Y.
et al. (eds), Proceedin^s of the Océan Drilling
Program, Scientijic Resulti 129: 203-220.
Matsuoka A. 1995. —Jurassic and Lower Cretaceous
radiolarian zonation in lapan and in lhe western
Pacific. Phe Island An\foV.yo A: 140-153.
Matsuoka A-, Hori R., Kuwahara K., Hiraishi M.,
Yao A. & Ezaki Y. 1994. — Triassic-Jurassic
Radiolariati'bearing sequences in the Mino
Terrane, Cenrr.il japan: 19-61. tn Gutdebook for
InterRad VU ficld excimion. Osaka.
Matsuoka A. & Yao A. 1990. — Southern Chichibu
Terrane, in Ichikawa K. et al. (eds). Publication of
IGCP Project: Pre-Cretaceous terranes of Japan,
Osaka 224:203-217.
Mizutani S., Shao J. & Qinglong Z. 1990. — Nadan-
hada Terrane in Relation to Mesozoic Tectonics on
Conrinent.ll Margin.s of East Asia. Acta Geologica
Sinica, Beijing3 (l): 15-29.
Nikitina A. P. 1971. — Late Paleozoic fusulinids of
Kavalerovo and Olga régions and their biostratigra-
phical importance. Author's abstract of thesis prepa-
red by candidate of geological and mineralogical
sciences, VSEGEJ, Vladivostok. 22 p. [in Russian].
Rudenko V. S. 1991. — Permian AlhaillelUma (radio-
laria) of Primotye and their hiostratigraphic impor¬
tance. Author s abstract of thesis prepared by
candidate of geological and mineralogical sciences,
Far Ea.st Geological Institutc, Vladivostok, 26 p.
[in Ru.ssianl.
Rudenko V. S. & Panasenko E. S. 1990, — Permian
Albaillellaria (radiolaria) of Pantovaya stratum of
Primorye: 181-193 [in Russian], in Zakharov
Yu D-, Belyaeva G. V, & Nikitina A. P. (eds),
New data on biostratigraphy of Paleozoic and
Mesozoic in the South Par East Far Eastern Branch,
SSSR Acadcmy of Sciences, Vladivostok.
Rybaika S. V. 1987. — Corwdonts of Primorye. State
ofstudy. Vladivostok, 26 p. |in Russian].
Sasnida K. 1988, — Lower juravdc mulriscgmenrcd
Nasscllaria (rom thc Usukaichi area, western part of
Tokyo Préfecture, central japan. Science Reports of
the fmtitute Geoscienct\ University Tsukuha^: 1-27.
Smirnova Ü- L. & Lepeshko V. V. 1991. —
Biostratigraphy and geological structure of volcano-
genic-cherty-terrigenous deposits of thc Central
zone of Sikhote^Alin (Primorye. Gornaya River
basin): 30-53 (in Russian), in Tochilina S. V. (ed.),
Paleontological and stratigraphical immtigations of
Phanerozoic of the Far East. Far Eastern Branch.
SSSR Acadcmy of Sciences. Vladivostok.
Vishnevskaya V. S. & Filatova N_ î_ 1996. —
Radiolarian biostratigraphy of Mesozoic in the
North-East Russia. Tikbookeanskaya Geologiya,
Khabarovsk 15 (1): 16-44 [in Ru.ssian|.
Volokhin Yu. G., Burii G. L, Rudenko V. S. Ôd
Filippov A. N. 1990. — Triassic cherty formation
of the South Sikhotc-Alin. Izvestiya AN SSSR.
Seriya Geologrcbeskaya, Moscow 4: 45-57 [in
Russian].
Vorobyeva T. F., Gubenko T. A., Poyarkov V. V. &c
Rudenko V. S. 1978. — New data on stratigraphy
of Middle Paleozoic deposits of che Sikhote-Àlin
Coastal anticlinorium. (Phanerozoic): 5-22 [in
Russian), /'/; Ablaev A. G., Poyarkov B. V. &
Poyarkova Z. N. (eds), Biostratigraphy of the Far
East South (Phanerozoic). Vladivostok.
Submitted for publication on 29 January 1998;
accepted on 27 July 1998.
GEODIVERSITAS • 1999 • 21 (4)
685
Combined radiolarian-ammonite stratigraphy for
the Late Jurassic of the Antarctic Peninsula:
implications for radiolarian stratigraphy
Wolfgang KIESSLING
Muséum für Naturkunde,
Invalidenstr. 43. D-10115 Berlin (Germany)
wolfgang.kiessling@rz.hu-berlin.de
Roberto SCASSO
Departamento de Geologia,
Ciudad Universitaria, 1428 Buenos Aires (Argentina)
Arnold ZEISS
Institut fur Paléontologie,
Loewenichstrasse 28, D-91054 Erlangen (Germany)
Alberto C. RICCARDI
Division Paleozoologia Invertebrados, Museo de Ciencias Naturales,
Paseo del Bosque, 1900 La Plata (Argentina)
Francisco A. MEDINA
CIRGEO, Velasco 847, 1414 Buenos Aires (Argentina)
Kiessling W., Scasso R.. Zeiss A., Riccardi A. C. & Médina F. A. 1999. — Combined radio¬
larian-ammonite stratigraphy for the Late Jurassic of the Antarctic Peninsula: implications
for radiolarian stratigraphy. in De Wever P. & Caulet J.-P. (eds), InterRad VIII,
Paris/Bien/ille 8-13 septembre 1997, Geodh/ersitas2) (4) : 687-713.
KEYWORDS
Radiolaria,
iimmoniies,
Late Jurassic,
Kimineridgian,
Tithonian,
bio.stratigraphy,
Antarctic Peninsula.
ABSTRACT
New biostraiigraphic dura From co-occurring radiolarians and ammonites in
Upper Jurassic sequences of the Antarctic Peninsula (Byers Peninsula on
Livingston Island and Longing Gap, Graham Land)> permit a revised and
more refined régional stratigrapliy. I he ncw data also allow a révision of the
chronostratigraphic assignineni of soine American radiolarian zones esrabli-
shed by Pcssagno and collaborators: the boundar)' of Zone 3-4 is assigned to
the latest Kimmcridgian, contrasting the former a^sjgnmenr to the carly/late
Tithonian boundar)'. The boundary between Subzone 4 beta and 4 alpha is
assigned co the carly Tithonian, but was usually correlared with the early late
Tithonian/latc late Tithonian boundary. The new chronostratigraphic dara
from Antarctica are used rogerher with recenr resuits of Baumgartner and
collaborators to revise the age a.ssignment of the North American Late
Jurassic radiolarian zones.
GEODIVERSITAS • 1999 • 21 (4)
687
Kiessling W., Scasso R., Zeiss A., Riccardi A. & Médina F.
MOTS CLÉS
Radiolaires,
Ammoniics,
Jurassicjue supérieur,
Kimméridgien,
Tithonicn,
biostratigraphie,
péninsule Antarctique.
RÉSUMÉ
Stratigraphie combinée de radiolaires et ammonites du Jurassique supérieur de la
péninsule Antarctique : implications pour la stratigraphie des radiolaires.
De nouvelles donnfe hiostraiigraphiques obtenues à partir de co-occurences
de radiolaires et ammonites dans le.s séries du Jurassrquc supérieur de la
péninsule Anrarcrique (péninsule Ryers sur l île de Livingston ci de Longing
Gap, Graham Land)t permettent de réviser et affiner une stratigraphie régio¬
nale. Les nouvelles donnée.s permettent aus.si une révision de.s attributions
chronosrratigraphiques de quelques zonations de radiolaires américaines éta¬
blies par Pe.ssagno ci ses coUaboraieurs : la limite de la zone 3-4 est assignée
au Kimméridgicn le plus tardifi contra^ant ainsi avec la précédente'assigna¬
tion à la limite Tîthonien prccocc-tardif. La limite entre la sous-zonc 4 beta
et 4 alpha est assignée au Tithonicn inférieur mais fut habituellement corré¬
lée avec la limite entre le.s parties inférieure et supérieure-du Tithonicn supé¬
rieur. I.es nouvelles données chronostiaitgraphtqiics de rAïuurcrique sont
utili-sée.s en même temps que les rcsuitais récents de Baumgartncr et .scs colla¬
borateurs pour réviser les attributions d’âge des zones à radiolaires du
Jurassique supérieur d’Amérique du Nord.
INTRODUCTION
Although Upper jurassic sequences with co-
occurring radiolarians and ammonites were
continuousiy reported in fhc lasf fcw ycars (c.g.
Pessagno et ai 1987a, b; O'Doglierty et al. 1989,
1995; Pujana 1989, 1991. 1996; Baumgarlnci et
al. 1995b; Zügel 1997), such findings can still be
regarded exccplional. Hencc, new sections yicl-
ding both radlolaiian and ammonite faunas are
of high value for the improvement ofbiostrati-
graphy.
Late Jurassic mud.sione sequences of ihe
Antarctic Pcninsula contain relatively wcll-preser-
ved ammonites and radiolarians at scveral locali-
ties. Two sections are dcscribcd in ihis paper.
The sections belong to the Anchorage Formation
(Byers Peninsula, Livingston Island) and
Ameghino (= Nordenslcjolcl) Formation
(Longing Gap, Ciraham Land), respectively.
Stratigraphically important macrofossils (ammo¬
nites, aptychi, bclcmnites. bivalves) as well as
microfossils (radiolarians) were found in the
same sections and somctinies even in ihe same
sam pies.
The ammonite tauna in the sequences is mainly
composed of cosmopolitan or Tethyan éléments
showing no significant dillercnces from Tethyan
or other eastern Pacific sites on a genus level.
Hence, ammonites allow a fairly straightforward
chronostratigraphic assignment.
The cxcdlcntly preserved radiolarian faunas reco-
vered hom carbonate concrctions exhibit a pro-
nounced Au.stral a.spect (Kie.s.s'Iing ëê Scasso
1996). Ncvetthclcss, they can bc linked to the
North American standard zonation (Pessagno et
ai 1993, 1994) and allow a detaiied biostrafigra-
phic subdivision. However, the chronostratigra-
phic radiolarian âges are aiways in slighr
disagreement with ammonite âges.
In ihis paper wc providc a reviscd chronostrati-
grâphic assignnient of the Kimmeridgian/
Tiihonian North American radiolarian zones
established by Pessagno et al. (1984, 1987b,
1993) and evaluate the applicability of other
radiohirian zonations in Antarctica.
GEOLOGICAL SETTING
l'he Antarctic Peninsula formed a separate plate
which was situated in Southern high latitudes
during Late Jurassic time (see review in Kiessling
& Scasso 1996).
688
GEODIVERSITAS • 1999 • 21 (4)
Stratigraphy of Antarctica
JVv'C UpperJurassic-Cretaceous arc magmatics ^ Occurrences of Upper Jurassic Mudstones
Fig. 1 . — Geological map of lhe northeastern Antarctic Peninsula (Graham Land). The studied localities are printed in bold.
This région is characterized by an almost conti- med partly on pre-existing continental crust
nuous magmaiic activity from the Early Jurassic (Hervé étal 1996).
to thc Miocene (Barker et al. 1991; Leat Back-arc of the Antarctic Peninsula volcaniclasdc
Scarrow 1994), sitnilar to the southemmost sédiments and anoxie radiolarian^rich mudstones
Andes. During the Jurassic period, thc eastward are supposed to unconformably overlay an oldcr
subduction of the Pacific Phoenix Plate led ro accretionary complex, the Triniry Peninsula
the development of a calc-alkaliue magmatic arc Group. The mudstone sequence belongs to the
(Antarctic Peninsula Volcanic Croup) whh voica- mainly Upper Jurassic Ameghiuo Formation
niclastic sequences in the fore-arc and back-arc (Médina & Ramos 1981; Médina et ai 1983)
areas. The magmatic arc is thought to hâve for- also known as Nordenskjôld Formation
GEODIVERSITAS • 1999 • 21 ( 4 )
689
Kiessling W., Scasso R., Zeiss A., Riccardi A. Sc Médina F.
(Farquharson 1982, 1983) which forms rhe basal
sedimentary infill of rhe Larsen Basin in rhe
northeasrern Anrarctic Peninsula (Macdonald et
al. 1988). The basin contains approximately
6000 m of epi' and volcaniclastic sédiments
deposited from the Laie jurassic to the Paleo-
gene. Ourcrops of rhe Ameghino Formation are
scattered along the eastern coast of Ciraham Land
(Fig. 1). They are either isoJ-ated by surrounding
ice-masscs or Idund in comploc tcctonic contaçt
to other rocks.
The Late Jurassic Anchorage Formation is the
chronostratigraphic équivalent oi the Ameghino
Formation in ihe lore-arc région (Pirrie &
Crame 1995). As in the Ameghino Formation
mudstones and tufTs prevatl, but additional sand-
stone beds are intercalatcd. 1 he Anchorage
Formation forms the base of a 1000 m thick
sequencc (Byers Group) ranging from the
Kimmeridgian to the Valangini.in (Crame et ai
1993). The Anchorage' Formation is only expo-
sed on Byers Peninsula, Livingston Island.
LOCALITY DESCRIPTIONS
Longinc Gap
Longing Gap is situated at the Nordenskjold
Coast (Larseii Inlet) of nonhern Graham Land
(Fig. 1). The area wichoui permanent ice cover
extends some A km in a north-south direction
and a maximum of 1.5 km in an casi-west direc¬
tion (Fig. 2) and Is surrounded by glaciers.
Longing Gap is the type locallty of the
Ameghino Formation and only rocks assigned to
the Ameghino Formation are exposed thene. *rhe
geological structure is a wide syncline with a
nearly east-west oriented axU. Beds dip to the
South at the northern margin of the exposure;
they lie horizontal in the Southern part,, and dip
gently lo che north at the southernmost margin.
Minor faults are présent, but no significant offset
was noriced.
The sedimentary succession consists of black
mudstones and gray tuffs, Both lithologies arc
tightly intercalatcd or mixed. Addidonally. cald-
te concrction.s are common throughout the sec¬
tion reaching 3 m in diameter. They occur in
mudstones as well as in tuffs, but mudstone
Ameghino Member
Longing Member ^
■ Ameghino Hut
/ Section for
- radiolarian samples
Moraine
Ammonite locaüty
Fig. 2. — Oulcfop of the Ameghino Formation at Longing Gap.
The profile line for radiolarian samples. important concrétion
levels and ammonite locations, and the âges provided by
ammonites are indicated.
concrétions are generally latger. At rhe base of
the succession mudstones predominate, while
towards the top tuff beds become incrcasingly
abundant. This trend lcd Whitham fie Doylc
(1989) to distinguish two members: a lowcr
Longing Member and a higher “Ameghino”
Member. Although there is a continuous transi-
690
GEODIVERSITAS • 1999 • 21 (4)
Stratigraphy of Antarctica
Radiolarian
samples
Ammonite
samples
030
K 57
Ranges of selected
radiolarians
E
3
K41
LG 20
020. 025.035. X6
LG 22
LG12, LG13, LG14, LG 25
LG 29. 013. 038. 046
LG2, LG3, LG 5. LG 26
LG 9, LG 10
LG 16
043, 044. 045
LG 4. LG 6, LG 7. LG 11
0 .
North American
radiolarian zonation
LO
LJJ
Z
O
N
Ammonite
chronozones
Spiticeras****
Koeneni***?
Blanfordiceras****
Densiplicatus’*?
Mendozanus***
VimineusVKossmatia’
Mucronatum*
Hybonotum*
Beckeri*
7
CH Interbedded tuffs and mudstones H Basaltic Sill
□□ Interbedded mudstones and tuffs — • Fault ?
Fig. 3. — Idealized lllhological column of the Ameghino Formation at Longing Gap. Important radiolarian samples, ammonite locali-
ties. selected ranges of radiolarian taxa, radiolarian zones and preliminary ammonite zones are shown. Ammonite samples from
transported blocks are indicated by a question mark. CrossStars after ammonite zones indicate: *, European standard zone;
Himalayan zone: ***, Argentlnean zone; ****, Antarctic zone. Due lolhe problems in recognizing middle Tithonian. we subdivide the
Tithonian sensu Gallico.
tion, the division proposed by these authors is
followed in this paper. Owing to the relatively
poor exposure quality of the succession it is diffi-
cult to déterminé the total thickness. Whitham
& Doylc (1989) hâve estimaied a thickness of
450 m for the Ameghino Formation at Longing
Gap, but Scasso èc Vülar (1993) mention
600 m. New gcodctic results Irom our ficld cam-
paign (SantisTeban 1997) indicate a total thick¬
ness of 580 m. The lower l.onging Meniber i.s
420 m thick, whereas the upper ‘"Ameghino”
Mcmber is 160 m ihick (Fig. 3).
The black mudstones in both members are lami-
nated or structureles.s. The tuffs are often graded
and show undulare bases due to loading. The
tuff layers are interpreted as pelagic deposits of
air-fall ashes, related to single volcanic events
(Whitham 1993). Intense silicification is fre¬
quent (Scasso et al, 1991). Mudstones as well as
tuff beds arc laterally continuons. Current sedi-
mentary structures are rare and no influence of
(storm) wave activiry îs évident. Slumps are very
rare and small.
The depositional environment of the Ameghino
Formation is assigned to an anoxie to dysoxic
basin, according to Farquharson (1983). Doyle
& Whitham (1991) and Whitham (1993).
Anoxie conditions prevaÜed e.specially in the
Longing Membcr; this is indicated by the often
lacking bioturbation and rare horizons with ben-
thonic tossils as wdl as by geochemical indicators
(Scas.so & Villar, 1993). In the “Ameghino”
Member moderately intense bioturbation
(Zoophycos, ChondriteSt Planolites) and a conse-
GEODIVERSITAS • 1999 • 21 (4)
691
Kiessling W., Scasso R., Zeiss A., Riccardi A. & Médina F.
100 ,
m
l-u_
coo
LU<
OC LU
CLCÛ
Z
O
s
cc
O
LL
LU
O
<
ÛC
O
X
ü
Z
<
B
V
x/
! V \ \ VT _
C!»» oT 3
? Uhligites sp.. Berriasella sp. Berriasian
Spiticeras {Spiticeras)
cf. spitense (Blanford)
Berriasella sp., ? Blanfordiceras sp. late Tithonian-Berriasian
? Blanfordiceras sp.
late Tithonian?
Subzone 4 a
Radiolarians
Subzone 4 (3
Retroceramus haasti (Hochstetter) gr. Kimmeridgian
^^Tuffs
Sandstone and Conglomérâtes
Mudstones
Fig. 4. — Idealized composite section of the Anchorage Formation on Byers Peninsula (Livingston Island). Only radiolarians from
Zone 4 could be recovered. Macrofossll âges are based on fauna collected by Crame et al. (1993) at the base and own data for the
higher part ol the section. The late Tithonian âge for the upper part of the Anchorage Formation is based on new findings of
Blanfordiceras sp. and Berriasella sp.
quent destruction of litminarion indicate dysae-
robic conditions.
The Longing Member is more poorly exposed
chan the “Ameghino'’ Member, Only about one
fourth of the Longing Member is exposed in
place, whereas more than half of the “Ameghino”
692
GEODIVERSITAS • 1999 • 21 (4)
Stratigraphy of Antarctica
Member is well exposed. However, with rhe
exception ot somc small displaccmcnts due to
cryoturbation, most of the Joose blocks forming
the scree cover can bc considered in place. This is
indicated by wcarhered carbonate concrétions
ihat arc perlcctly traccd in the scree, 7'herelorc, it
was possible to gct a complété section of the
Anieghino Formation at Longing Gap.
The sequence contatris common macrofossils
(ammonites, belemnites, bivalves, aptychi, fishes,
driftwoüd) allowing a stratigraphie subdivision.
We emphasize on ammonites in this paper.
Although ihc microfauna is diverse as well
(radiolarians, sponge spiculés, foraminifera, paly-
nomorphs), wc exclusively rcler ro radiolarians
herein. The ammonites, like most other macro-
iossils, are parttcularly enrichcd in certain hori¬
zons, which are ollcn widcly separated.
Radiolarians are only well preserved in carbonate
coneretions. However, the concrétions are conti-
nuously distributed in the Longing Gap Section.
As a conséquence the radiolarian documentation
is more continuons than the ammonite docu¬
mentation.
Bvers Peninsula
The Anchorage Formation was defined by
Crame et ai (1993). It is composed ot dark gray
to black mudstones interbedded with sandstones
and tuffs. Its irue boundaries bave not been
observed. Although it is separated (rom rhe over-
laying Berriasian l’icsidcnr Beaches Formation by
a fault, faciès analysis indicatcs a transitional
change bens-een this two units.
Detailed mapping (Lopetrone 1997) allowed the
récognition of several Anchorage Formation out-
crops m faulr-bounded bloclts showing different
ficies associations. Crame et ai (1993) suggested
a minimum thickness of the composite section of
105 m. A composite section quite different and
difficult to match with the one of Crame et ai
(1993) re.sulteti from oiir work (Fig. 4), probably
as a conséquence of the .structural compicxity of
the area. The inlcgrated thickness of the
Anchorage Formation is close to 120 m inclu-
ding an uppermost sequence transitional to the
President Beaches Formation.
The whole sequence is composed of radiolarian-
rich mudstones with intercalations of tuffs and —
in contrast to the Ameghino Formation — sand-
stonc beds (sec Pirrie & Crame 1995, for a detai-
Icd description). The sandstonc beds reach up to
80 cm in thickness and show evidence of turbidi-
tic sédimentation. Carbonate concrétions occur
ihroughout the section. Flowever, ihcy are smal-
1er than at Longing Gap and many are silicified.
As in rhe Ameghino Formation thcrc is a shift
from parallel-laminatcd to intensely biorurbated
mudstones within the sequence.
Oui* composite section is composed of four inter-
vals, The lowermost exposure is about 1 1 m
dnck. It is separated Ifom the middlc part by a
fault with Lincertain offset. Fhis middle part is
about 55 m thick. A one meter ihick conglomc-
rate occurs at the top of this part of the section.
The upper two parts of the section reach a com¬
posite thickness of around 50 m and are predo-
minated by sandstones and conglomérâtes.
In contrast to Longing Gap. âge diagnostic
macrofossils are relatively rare on Byers
Peninsula. Driftwood, bivalves, belemnires, and a
few ammonites could be recovered. The carbona¬
te concrétions bcar very well preserved radiola¬
rian faunas in the middle section.
FAUNAL CHARACTERISTICS
Owing to the high paleolatitude of the Antarctic
Peninsula the fossils are expected to show biogeo-
graphical différences as compared with lower
paleolatitude sites. Since paleobiogeography bas
some impact on stratigraphie corrclaiion we
shortly discuss biogeographical affinitics of both
ammonites and radiolarians below.
Ammonites arc aftcctcd by the high latitude
dcpositional environment by their reduced diver-
siry and some morphological modifications.
With the probable exception of BLwfordiceras. ail
Antarctic généra are to bc found in Tcthyan sec¬
tions as well- There is no striking évidence for an
Austral ammonite province in the Tithonian
which could be équivalent to rhe Northern
Hemisphere Boréal provinces (Callomon in
Hillebrandt ei ai 1992, but sce also Enay ôc
Cariou 1997).
In contrast, the radiolarians display a pronoun-
ced Austral aspect, both in the Ameghino
GEODIVERSITAS • 1999 • 21 (4)
693
Kiessling W., Scasso R., Zeiss A., Riccardi A. &c Médina F.
Fig. 5. — Age diagnostic radiolanans Tram Byers Peninsula (Ll) and longing Gap (K. LG) A Bivallupus mexicanus Pessagno &
MacLeod, etched concrétion eut parallel to Oedding (K 20-1); B, Loopus primittvus (Matsuoka & Yao) (Ll 31). C. Tethysetta boesii gr.
(Parona) (K 44); D, Parvicinguia coleniani Pessagno S Btomô (K 25); E. Parviclngula exr.elsa Pessagno S Blome (LG 1);
F, Crucella theokattensis Baumgartner (K 14-t). G, Triirabs liiododactylus Baumgartner (Ll 31); H, Acaothôcircus fitriû&us Jud
(Ll 31): I. Valiupus tiopsoni Pessagno & Blome s./., very small specimen (Ll 44); J. Penspyndiuw ordinarium (Pessagno) gr. (K 6);
K, Haliodfctya i?) aniiqua (Rüst) s.i. (K 14*t); L, Acaenioiyfe pan/a Vang = Acaeniotyle umbilicata (Rüst) gr. (K 13); M, Sethocapsa
trachyostraca Foreman (K 13); N, Gongylothorax favosus Dumitrica (K 4); O, Suna echiodes (Foreman) s.l, (Ll 13). See Kiessling
(1999) for figures of additional âge diagnostic radiolarians. Scale bar: A, 76 pm; B, I, M, N. 50 pm; C-H, J-U O, 100 pm.
694
GEODIVEBSITAS • 1999 • 21 (4)
Stratigraphy of Antarctica
Formation and in the Anchorage Formation.
The faunas exhibit typical high latitude characte-
ristics as indicared by the prédominance of
Parvicingula/Praeparvicingtila (Fig. 5D, E). The
Antarctic fauna.s are especially similar to the
Southern Boréal Province as defincd by IVssagno
6c Blome (1986), Pessagno étal. (1993), and
Hull (1997). Borh the Austral Province and the
Southern Boréal Province hâve many species in
common and share fcacurcs such as the lluctua-
ting pantanclliid abundance and the high diversi-
ty of Parvicingula (Hull 1995; Kicssling 1999).
Compared wiih fâunas from équivalent latitudes
on the Northern Hemisphere. Pantarielliidae are
considerably more abundant (Kiessling 6c Scasso
1996). Typical Tethyan taxa such as Tritmhs and
Podocapsa are rare but présent. Vallupus hupsoni
and other vallupins are présent, which is very
useful for stratigraphie corrélation. Hsuum and
Perispyridhim arc as conimon as in ’lethyan sec¬
tions and can also be used for global corrélations.
However, the stratigraphically important
lethyan taxa Mirifiisus. kistola-. and Acanthoarcus
dicranacantbos (S'quinabol) are totally absent in
Antarctica which limits the corrélation with
Tethyan sections.
A sélection of stratigraphically important radiola-
rians is shown in Figure 5. A more compréhensi¬
ve taxonomie framework is provided by Kiessling
(1999).
STRATIGRAPHY
Former ammonite and bivalve data suggested an
âge range of Kimmeridgian/early Tithonian to
late Tithoniaii/Berriasian for the investigated sec¬
tions (Whirham & Doyle 1989; Crame et ai
1993; Pirric 6l Crame 1995). Our new matcrial
is essentially in agreemcat with previous désigna¬
tions. but wc are now ablc to pj-ovide a more
detailed stratigraphie subdivision.
The first stratigraphie subdivision of the Longing
Gap Section based on radiolarians was proposed
by Kiessling 6c Scasso (1996) and Kiessling
(1996). Referring to the North American stan¬
dard zonation the authors came co the conclu¬
sion chat the âge range of the Ameghino
Formation is early Tithonian to Berriasian. Our
new material shows that although the radiolarian
zonation of the sequence is stiJl valid, the chro-
nostratigraphic calibration nceds to bc revised.
The discussion of ammonite âges relies on com-
pari.sons with Antarctic, Argentincan, European,
and Himalayan zonations, whereas the radiola¬
rian zones are first exclusively compared with the
North American zonation ol Pessagno et al.
(1984, 1987, 1993, 1994) and Hull (1997).
Stratigraphy of Longing Gap
Ammonites (A. Zeiss and A. C. Riccardi)
The first ammonite from Longiag Gap, a Late
Jurassic Perisphinctes sp., was mentioned by
Bibby (1966). Further investigations were under-
laken by Médina & Ramos (1981, 1983),
Thom.son (1982), Farquharson (1983), Médina
et al (1983), Zeis.s (manuscripr 1985), Whitham
6c Doyle (1989), and Doyle 6c Whitham (1991).
New material was collected during the
Argentinean Antarctic field carnpaign (1993/
1994) by Scasso, Santisteban and Kiessling. Mosi
ammonites are difficult to identify, as incomplète
and crushed spccimens prevail; often only
impressions of crushed ammonites are availablc.
Therefore, many déterminations are obiained
not with the same securiiy as from better preser-
ved material; this should bc kept in mind when
using the déterminations beîow.
From base to top we can identify the following
macrofossils (horizons are numbered according
to the closest concrétion Icvcl, Fig. 3):
K 16 [LG 11 J. Virgataxioceras cf. setatohies
(Berckhemer 6c Hôlder) (Fig. 6F): the impres¬
sion of a crushed perisphincrid ammonite with
relativcly coarse ribs. Ribs prcdominantly bifur-
cating, but sometimes triflircating (“polygyrate'')
The ribbing .style rc.scmbles somewhat thaï of
“Perisphinctes'" uracemis (Berckhemer 6c Hôlder,
1959, pl. 7/35), but the ribs are branching a lir-
tle deeper near rhe niiddle of the flanks and rhe
secondaries are somewhat more inclined, Tluis,
the spccimen fits better to a paratype of
Virgataxiocerm setatoides (Berckhemer 6c Hôlder
1959, Fig. 30).
K 16 [LG 4]. Virgataxioceras cf. setatoides
(Berckhemer 6c Hôlder): an impression of a cru¬
shed Virgataxioceras. The specimen is rather close
to Virgataxioceras setatoides (Berckhemer 6c
GEODIVERSITAS • 1999 • 21 (4)
695
Kiessling W., Scasso R., Zeiss A., Riccardi A. & Médina F.
Fig. 6. — Age diagnostic ammonites from Longing Gap. A, ? Virgatosphinctes densisthatus (Steuer) (LG 20); B, Virgatosphinctes
aff. australis (Burckhardt) (LG 25), C, TarameHiceras cf. prolithographicvm (Fontannes) [LG 16(1)]; D, Aulaœsphinctoides (?) sp. juv.
[LG 16(2)]; E, Subplanitoides cf. oppeli Zeiss [LG 9(2)]; F, Virgataxioceras cf. setatoides (Berckhemer & Hôlder) (LG 11 ). Scale bar:
1 cm.
696
GEODIVERSITAS • 1999 • 21 (4)
Scratigraphy of Antarctica
Fi 6- 7 — Age diagnostic ammonites from Longing Gap
A. Neochetoceras (?) sp. [LG 9(1)); B, Kossmatia (?) et. tenuis-
triata (Gray) (LG 3); C. Virgatosphinctes altemecostatus
(Steiger) (LG 29), Scale bars: 1 cm.
Hôlder 1959, fig. 31). The shape and the ribbing
style agréé well. Différences are indicated by the
somewhat more rigid recticostate and denser rib¬
bing as well as by ihc branchirig point of chc ribs
situated a little deeper on our specimen.
K 16 [LG 6]. ? Vh’^aiûx/ocems cl. setatoides
(Berckhemer ^ Hôlder): a rather poorly preser-
ved specimen. Considering shape and ribbing
style it seems to belong to the above destribed
specics or to a rclated latc Kimmeridgian péri-
sphinctid. A similar specimen has been destribed
from the Antalo Limcstonc of Ethiopia (Jordan
1971).
K 17 [043]. Glocbiceras percevait (Fontannes);
Glochiceras cf. lilhographiciim (Oppel);
Taramelliceras n. sp,. ail. proluhographicimt
(Fontannes); l'orquiidsphinctcs hàbyensis Spath;
Lamellaptychxii lamellosus (Parkinson): ihis
sample contains a new species of the Itira-
mellicems proUthographicum/Glochket'as lithogta-
phiettm group. The peciiliar ribbing on the llank.s
of a large specimen is rather similar to
Taramelliceras hemiplenra. while ovcrall morpho-
logy, ribs, and uodes of the outermost part of the
flanks and the marginal and ventral région are
well comparable wîfh stronger ribbed variants of
the T. prolithographiciimlG. lithographicum
group.
A similar, hut smallct species ol the same group
is T. flandrini (Collignon I960, pk 147, fig. 583)
from (lie early Tithonian of Madagascar. 'Fhat
specics has a wider umbilicus, is stronger ribbed
and shows no nodes in the center of chc external
side.
K 17 [044]. Katroliceras sp., Retroceramus cf.
haasd (Hochsietter).
K 18 [045]- Tarciiuttisphinctes
K 18 [LG 16(1)]. Taramelliceras cf. prolithogra-
phicum (Fontannes) (Fig. 6C); an impression of a
partiy pteserved Taramellkerns. The outer part of
the flanLs is well observable. Thèse are ornamen-
ted with ftdcare ribs. The inner part of the ribs is
not strongly curveJ, the outer pan is curved for-
ward. The ribs bifurcate occasionally The ends
of the rilis are marked by smaU tubcrclcs. A row
of tubcrcles i.s aiso observed on the venter. The
ribbing style is characteristic for Taramelliceras
prolithographktim (Füiirannes). However, as we
cannoi observe the inner parts of the llanks and
the specimen is not complété, we déterminé it as
Taramelliceras cf. prolithographicum.
There is some affînity to T. cf rigidum as figured
GEODIVERSITAS • 1999 • 21 (4)
697
Kiessling W., Scasso R., Zeiss A., Riccardi A. & Médina F.
by Médina al. (1983, pl. 2e), but this détermi¬
nation docs not agréé with the description of the
species by Hôlder (1953) and his illustration of
the hoJotype.
K 18 [LG 16(2)]. Aul/icosphinctoides (?) sp. juv.
(Fig. 6D): this small specimen is difficult to
identify, as young spécimens ot the généra
Aulacosphincioidehy Katroliceras and Torquati-
sphinctes can be very similar and only the cross-
section could help ta distinguish them (d. Spath
1931). However, there is a rather good corres-
pondence between the shape of our specimen
and those of young Aulacosphhictouks as figured
by Spath (1931, pis 78/4, 79/7). Bearing in
mind the problems ineniioned above, specimen
is best identified as Aulacoaphwcioiclti (?) sp. juv.
K 29 [LG 9(l)j. Neoche-toceras (?) sp. (Fig. 7A): a
rather w'eU-presetved fragment of a compressed
oppeliid with narrow \imbilicus. The pour pré¬
servation of the suture does not allow to décide if
the specimen bclongs to the Haploccras subvltma-
tum group. As the ovcrall shapc is that of
Neochetoccras (sec Oppel 1863, pl. 69/3)» this
specimen can he assigned to Ncochvtocems (?) sp.
K 29 [LG 9(2)]. Snhplannoulcs cf. opp(4i Zei.ss
(Fig. 6E): an impression td a th nsely rihbed peri-
sphinctid fragment- A cast ol the .specimen is
very close to Stibplanitoides appeli Zeiss (1968,
pl. 8/2), As the venter is nor observable a déter¬
mination as Siihplanitoîdes cf oppeli is jusfified.
K 29 (LG 10, LG 27]. Neochetoreras (?) sp.:
several oppeliid specimens, crushed. SimKar
forms hâve been figured by Wliitham & Doyle
(1989, fig- 6e). Tliey agréé in shape with
Neochetoccras. In order to exclude tbc possibility
that they bclong to Pseudolissoceras, ihc poorly
preserved renrains oi siuurc-lines were closely
observed. In che end we are convinced that the
sutures suggest an assignment to Neochetocents
rather than to PseudoUssaceras.
?K 29 [LG 28]. Glochiceras sp.: another oppeliid
specimen. The widcr umbilicus suggests an assigiv
ment to Glochiceras rather than to Neochetoreras.
K 30 [LG 3]. Kossmatia (?) cf tenuistriata (Gray)
(Fig. 7B): fragment of a small ammonite. The
ribbing is rather fine and dense. The branching
point is situated in rhe upper part of the flanks.
On the inner part of the last whorl the seconda-
ries are bent forward. At the end of the shell the
specimen is somewhat damaged and the bend is
not well preserved. The decerminarion of such a
small specimen is difficult, OÊpcdally when the
ventral side can not be inspccicd. Some afiinity
exists to similar densely rihbed forms like
Kossmatia aff. temtisiriutu Gray (Thomson 1983,
fig. 3g) or somc Virgatosphinctes of the tennili-
neatm-btirckhardii group (cf. Indans 1954,
pl. 13/1, 4). Thcrc is al.so .some rcscmblance to
the inner whorls of a ^'Lirhacoirras sp,''j as figured
by Wliitham & Doyle (1989, fig. 6g) Judging
from the ribbing on the outer whorl, the forrn of
Whirham & Doyle does nor belong to Litha-
cocerasy but more likely ro forms like Fi-anconites
teriuiplicatus 7.ÇW (1968, pl. 11/4) Para-
bcrrutsella btondeti Zeiss (1968, pl. 12/2) is aiso
comparable to our form, but exhibirs a different
development of ribs on the outer whorl. Ail diese
forms corne from rhe upper part of rlie lower
Tithonian. The détermination as Kossmatia (?)
cf. tenuismata h therefore only one of .sec'eral
other possibilicies.
K 31 1013, 038a-e, 046, LG 12, LG 14,
LG 25, LG 29]. A 1 m thick bank with abun-
dant ammonites: ? Aulacosphifictoides sp.;
Haplocenn sp.; Oppeliidae indet.; ? Taramelliceras
-Sp.; Substj'eblites or Uhligites aft. kraffti (Uhlig);
ViïgatosphJrjcfes cf. and aff. amlescHsis (Douvillé);
Virgatosphiactes sp.; Virgatosphiactes (Lithaco-
ceras) sp.; Lamellaptychus cf. lamellùsus
(Parkin.son); Virgatosphinctes alternecostatus
(Steiger); Virgatosphinctes aff. australis
(Burckhardt).
[013]- ? Substreblites or Uhligites aff. kraffti
(Uhiig): a specimen of47 mm in diameter, very
involute and with fine falcoid ribbing. U looks
like the spccimens figured by Thomson (1979,
pis 2/i|, 3/d, f) under the above mentioned
names. However, détermination is doubtful sincc
the venter could not be ob.served and die ribbing
is srronger.
[LG 29]. Virgatosphinctes altcrnecostatus (Steiger)
(Fig. 7C): half of ihe ammonite is preserved. The
ribbing style is similar to V. denseplicatus nnunda
(Spath 1931, pl. 96/2), but ihc umbilicus is
more narrow. In ihis respea Perisphinctes" alter-
nccûstatus Steiger (1914, pl. 104/1) fies better.
This species seems to belong to Virgatosphinctes
representing an intermédiare form between the
698
GEODlVERSfTAS • 1999 - 21 (4)
Stratigraphy of Antarctica
denseplicatiis and communis group.
[LG 25]. Virgatosphinctes aff. australis
(Burckhardt) (Fig. 6B): a fragmentary specimen
of Virgatosphinctes witli a radier narrow umbili-
cus, but wirh more disrant, polygyrate and bifur-
catc ribs (cf. Indans 1954, pl. 20/6).
K 32 [LG 22, K 32]. Suhdkhotomoceras sp.; ?
Virgatosphinctes sp.
K 34 [020, 025^ 035, X8]- Virgatosphinctes
]^^Lithitcocerüs^^ IndansJ sp.; Aulacosphhictoides (?)
cf. patagoniensis (Favre in Tavera); Buchia cf.
hoebstetteri (Flemint^); Buchia sp.
[025]. A ulacosphinctoides (?) cf patagoniensis
(Favre in Tavera): a fragment of a rather large
pcrispliinctid. Fhc bifurcation point is çhanging
in height benveen the inner third and the outer
third of the flanks on the penultimate and outer
whorl. Ribs on inner whorl split up in half co
rwo thirds ofthe height of die llanks. l’iicrc is no
virgatotonie or polygyrate splitting of the ribs.
Single ribs are intercalaied e.specially on chc outer
half of the penuJiimate ând on the last whorl.
Since die specimen is fragmentary the assign-
meni to Auhicosphinctoides rcniains quescionable.
A désignation to ImpuUisphinctes could also be
possible, l'hcre is some affrnir)' rn speclmens
figurcd as ''Blanfordiceras patagoniense' (Favre)
Feruglio by Tavera (1970, pl. 3/8). However,
those forms are smaller, more coarscly ribbed,
and the liigh outer whorl of our specimen is
absent.
K 40-1 [LG 20]. ? Virgatosphinctes dertsistriatiis
(Steuer) (Fig. 6A): an impression of a densely
ribbed, virgatosphinctid ammonite wich a rather
narrow umbilicus. It has a good coiinterpart in
the specimen figured by ïndans (1954, pl. 21/5)
as V. densisty*iatus (Sieuei), but dicrc is aJso a dis¬
tinct affinity to undescribed forms of
Catutosphinvtes Lcanza & Zeiss (1992) from
Zapala, Argentiiia.
K 4l. ? Kawhiasphinctes cf. antipodus vScevens: a
fragment, broken at about die level of midflanks
or slighrly above. Only the outer half of che
flanks wich straight and slighdy prosiradiate rÜis
can bc observed. Any probable bilurcation point
of dic ribs should be situated deeper. Tlie flanks
arc similar to the outer flanks of Kawhiasphinctes
antipodus Stevens (1997, pl. 32/3) or Virgato¬
sphinctes aff. denseplicatus (Thomson 1979,
pl. l4/a). However, the lacter is more densely rib-
bed and does not fit well. The specimen is roo
poorly preserved for any more précisé identifica¬
tion.
K 57. Blanfordkeras cf wcaveri HowHert: a speçi-
men of 87 nim in diarneter with an umbilicus of
ca, 40 mm. The venter is not preserved; of the
last whorl only one quarter is preserved. The rib-
bing i.s similar to diat in specimens figüred from
Antarctica as Blanfordkeras u>taveri by I Inwlerr
(1989, pl. 2/5, 7), but our form is more evolute
and the ribhing is somewliac coarser. The same is
ULie in comparison with the specimen figured by
Krantz (1928, pl. 3/4) or Weaver (1930,
pl. 3/356-357). The ribs divide above midtiank
and are widely spaccd iti die last quarter of dic
whorl as iri Blanfordkeras watlichr Gray as figu¬
red by Steuer (1891-1892, pl. 16/1). ‘Fhcrc is
also sonie similarity co Blanfordkeras delgai
Collignon (I960, pl. 166/680).
[030]. Siibsteuroccras or Parodontuceras sp. 1 lie
specimen is comparable to the one figured by
Ülivero et al. (1980, pl. 1/2) ironi James Ross
Island II is also similar to Kossmatia carsensis
(Thom^son 1973).
[Al], Blanjhrdicerns d. weaveri Hewlett; rhis
ammonite stems from a moraine deposir above
the top of dic section. The specimen is compa¬
rable with ''Beriassella stihprivasensis' Kraniz {in
’Fhomsnn 1979, pl. 7/i). which was included by
Howlett in his new spccics B. weaveri. It is also
similar to ''Berriusella behrendsenr of Feruglio
(19.36, pl. 7/3-7, 9).
Stratigraphie subdivision based on ammonites
Mcdina &: Ramos (1981) and Médina et al.
(1983) describeJ ammonites from Longing Gap
that can be assigned to ihe catly lo middle
Kimmeridgian. Our new material did not
contain ammonites of this agc.
In our section, the firsr horizons with ammonites
occiir some 80 m above che base (K 16, K 17),
The.sc Icvcls bclong co ihe lare Kimmeridgian
Hyhonoticeras beckeri zone. The presence of rhis
sub.scagc is also demonscraccd by a specimen figu¬
red by Whitham & Doyle (1989, fig. 6c) as
Hyhonoticeras sp. This form appears to represenr
the microconch of a new species of Hyhonoticeras
{Hybonotella) which belongs to the group of
GEODIVERSITAS • 1999 • 21 (4)
699
Kiessling W., Scasso R., Zeiss A.. Riccardi A. & Médina F.
H. beckeri. The speeimen of Wlïitham & Doyle
can best bc comparée! with the inner whorls of a
macroconch figuied as " Hybonoticeras
hybonotiirn' hy Collignon (I960, pl. 132/494)
from tlic ‘■'Kinimcfidgicn moyen” of Madagascar.
However, the spccjes and âge assignmenr of
Collignon cannot be affirmed.
The presence of Submediterranean taxa
( Virgatûxiot'eras, Hybonoticems) in Antarctica may
be astonishing. However, Zeis.s {1971. 1979) has
shown thar rbese généra are widespread along the
eastern part of /Vfrica (Ethiopia-Tanzjinia). Those
forms probably immigrated together wiih Indian
taxa (cf. Howlett 1989) via the Malagassian sea-
way into the Antarctic Région.
The early Tithonian Nyboriolh'cms hybonoturn
zone is reached in concrétion Icvcl IC 18 as pro-
ved by charactcristic làramelUcenis .spccics. In the
middle part of the Longing Mcniber (K 29,
K 30-1) the ammonites may correspond with the
Mucronatum and Vîmineus zones of Sonthern
Germany. They are comparable with Sub-
planitokies^ Franconhes and to ihe Pacific genus
Kossmatia.
Higher in the section, somc 70 meters above the
former ammonite horizon, we fine! a typical
Virgatoiphirivtn fauna similar to that of the
Argenrinean Nenquen Basin (K 31-K 32). This
fauna is assigned to the latc early Tithonian
Mcndozünns zone in Argentina.
Virgatoiphinctei Ls picscnt up to level K 40-1. It
should be noied chat truc middle Tithonian clé¬
ments ol South America {Pseudolisscfceras and
Aidacosphmctes proximm) hâve not been discove-
red in Longing Gap so far. Reports from other
Antarctic localities are very doubtful. too.
However, the Antarctic Virgtttoiphimiei fauna
may aiso tcpreseni the middle Tithonian and
reach up even until the earliest laïc rithonian.
The Virgàtosphwctes-tlildoglochiceras assemblage
of Spiti was assigned to the middle Tithonian hy
Krishna et ai (1982) and Enay & Cariou (1997)
assigned rheir Virgdtüsplnticti's ics.sernblage lo the
late Tithonian. The laiter is charactcrizcd by
V. denseplicatus which is also known from
Antarctica (Ilowlett 1989). Il is especially remar-
kable that in the upper part of the
Virgatosphinctes beds of Longing Gap (K 34-
K 40) only densely ribbed forms predominate
which do not branch up in more than rhree
secondaries. The speetmen of K 41 cotild bc of
middle or late Tithonian âge (cf. Stevens 1997;
Enay Si Cariou 1997). We prehminarily assign
the bed.s above K. 32 to the earliest late Tithonian
Demiplicaïus zone. Eurther investigation are
neccssaiy to define the range of rhe
Virgatosphinctes fauna more precisely in the
Antarctic région.
The firsc occurrence of Blanfif^dicerns s,s. is noted
in concrétion level K 57 providing clear evidence
for late Tithonian. On zVIexandcr Island
(Howlett 1989) ihe Blan/ordiceras fauna includes
Lytohoplites weaverU a truc Lytohnpûtes. Spccics of
this genus hâve been found in Cliile (Biro-
Bagoczky 1984) in rhe Corongoceras alternans
zone, the second zone of rhe lace Tithonian in
South America. Ir corresponds approximately
with the zone tT ParauLtcosphincies tmniitorius in
Mediterranean Europe-, i.c., dic middle part of
the late Tithonian. This is ia agrcemenr with
Thomson (1979) and Howlett (1989) who
cons'idered the Bbmfordîceras zone as part of the
late Tithonian.
Some 30 m above K 37 lollow bed.s chat can
questionably bf correlated with the Argenrinean
Substruroceras koeneni zone. We can suppose the
Jurassic/Cretaceous boundary in these beds (cf
Zeiss 1986).
Near the top of the section a Berriasian âge is
suggested bv Spiticeras (Spiiiccras) according to
Whitham ÔC Doyle (1989).
Narth American radiularian zones at Longing Gap
The base of the Longing Gap Section is assigned
to Zone 3 as indicated by the presence of Caneta
hsui (Bessagno) and the absence of Valhipiu hop-
sont Pessagno Blome. Since neither Tnranta
s.s. nor Hsuum rnaxwelli Pessagno were found,
\vc présume that the basal part of the Longing
Gap Section bclongs to upper Subzone 3 alpha,
alihough the primary marker taxon Napora
burckhardti Pessagno, Whalen & Yeh was not
rccorded (- exclusively Terhyan marker taxon
according to Pessagno et ai 19S7b). The secon-
dary marker taxa Parvkhtgtda colemani Pessagno
&: Blome (Fig. 5D) and Hiuum mclaughlini
Pessagno & Blome are présent near the base indi-
cating Subzone 4 beta. However, the primary
700
GEODIVERSITAS • 1999 • 21 (4)
Stratigraphy of Antarctica
marker taxon Vallupus hopaoni was nor recorded,
although pantanelliids and everi vallupins are
common in some sampics and we hâve searched
for this specics inrcnsely. The lasi distinct hori¬
zon bcfore che evolurionary firsi appearance of
V hopsoni is K 14-K K 15. Above ihose samples
V. hopson'i is absent, but the sc-arcity ofother pan-
taneiliids indicates chat irs absence may be due to
paleoccanographic factors.
The base of Zone 4'Subzone 4 beta is well defi-
ned by the fîrst appearance of Vallupus hopsani in
sample K 2U-1. This is noted just above the first
Tithonian ammonites assigned to the Hybo-
notum zone; The firsi occurrence of Vallupus
hopsoni provides the most reliable datum in the
section. It will be dlscassed in détail below. Up
section V. hopsoni is continuously présent in
samples with a high total pantanelliid abundancc.
The top of Subzone 4 beta Ls marked by rhe last
appearance ol Perispyridium in concrétion K 29.
Perispyrtdhipi is represented by rv\^o ne^v species
within Subzone 4 beta (Kiessling 1999). It is
continuously rccorded in ail better preserved
assemblages. The lasc occurrence of Péri-
spyridium is noted between aminoiiiie a.s.scm-
blages assigned to the early diihoniaii
Mucronatum and zones, rcspectively.
Marker taxa in Subzonc 4 alpha and the suspec-
ted Zone 5 arc rare. The base of Subzorie 4 alpha
is characterized by abundant PantanelJiidae
including Vallupus hopsoni and the absence of
Perispyridiîim. The last occurrence ot K hopsoni
is noted some 20 m above the ammonite horizon
tliat lias been assigned to the late early Tithonian
Mucronatum zone, The upper boutidary of Sub¬
zone 4 alpha is poorly defined owing to the
absence of ptimaiy marker taxa. Ir is preliminari-
ly drawn between ihc last occurrence of Pannein-
gula coleniani Pèssagno & Blome and the first
occurrence of Wllliriedctlum ruesti (Tan Sin Hok).
The radiolarian âges are without major contra-
dicrions with regard to the zonation of Pèssagno
et al. (1993). However, die secondary and corpo¬
réal marker taxa Patvicingula çùlemaniy
Parvicingula joncsi Pèssagno s.l. and Hsuuw
mclaughlini s.l. occur slightly carlier than predic-
ted in Pessagnos zonation.
In summary, the Ameghino Formation at
Longing Gap ranges from the Kimmeridgian to
che early Bertiasian. The Longing Mernber
ranges Irom the Kimmeridgian to probably the
earliest laie Tithonian and the "Ameghino”
Mernber is assigned to rhe latc Tithonian to eatly
Bertiasian. The part of radiolarian Zone 3 expo-
sed at Longing Gap (top of Subzone 3 alpha) can
be a-ssigned to tbe Kimmeridgian. The base of
Zone 4 is likcly to coïncide with the base of the
lithonian or latest Kimmeridgian. The bounda-
ry between Subzone 4 beta and Subzone 4 alpha
is assigned to rhe middie part of the early
Tithonian (sensu Gallico). The boundary bet¬
ween Zone 4 and Zone 5 is less clearly deflncd at
Longing Gap. The occurrence of Spiticeras
(Spiticeros) approxlmately coincides with radiola¬
rian assemblages preliminarily assigned to
Zone 5. This would indicate chai the boundary
of Zone 4-Zone 5 agréés with the Jurassic-
Cretaceous boundary. A more detailed discussion
tollows below.
SïKAI IGRAPHIO SU.MMARY OF ByEKS PeNINSVU
RadioLmans
No radiolarians coald be extracted from rhe basal
section, but the middie section yielded several
exceptionally well preserved faunas (Figs 4, S).
Most of the productive samples can be assigned
to Subzone 4 beia, This is confirrned by the co¬
occurrence of Vulluptis hopsoni and Perispyrldhfm
near the ba.se of the fertile séquence (LI 44). Tlie
overlying concrétions lack Vallupinae (for paleo-
ceanographic rcasons) but contain Perispyridiunïy
thus indicating Subzonc 4 bet-a as w'ell.
Near the top of the middie section, a well-preser-
ved fauna (L1 35) concains Vallupus hopsonh but
lacks Perispyridiîim. This sample is, therefore,
assigned rn the hase of Subzone 4 .ilpha.
No âge diagnostic radiolarians could be extracted
from che upper section.
AmmoniteSy belemnites and bivalves
First âge diagnostic ammonites and belemnites
from the Upper ju rassie sequence wcrc listcd by
Tavera (1970) and Smcllie et ai (1980). SmclUc
et ai (1980) found indication for Kimmeridgian
(Hibolttes marwicki niarwicki Stevens and
Subplanites early Fithonian (Belenwopsis sto-
leyi Scevens) and latc Tithonian (Berriaiella cf.
hehrendseni Burckhardt). Without referring to a
GEODIVERSITAS * 1999 • 21 (4)
701
K 65
K 47
K 44
K 38
K 33
K 30b
lîW
K27
LG 1
K 24
kW
K 20-1
K 18
kIs”
K 14-1
K13
K 12
K 8-1
K6
K4
K2
ü 35
ü 13
TTÏT
Lt44
ü 48
Stratigraphy of Antarctica
section they gave a “balancée!” âge of early
Tithonian for the “mudstonc member".
Crame et al. (1993) found inocerams of the
Retroceramm htmsû (Hochscetter) group near the
base of tlie section stiggescing (but not proving)
Kimmcridgian. Ncar the top of their section
Crame et ai (1993) found an ammonite-bcleni'
nite assemblage with Tithonian affinities. We
could colicct BerrünelLt and ? Btanfordiceras 25 m
below the upper boundary of ihe exposed
séquence providing évidence for late Tithonian.
Spiticeras (Spiticents) cf spitense (Blantord) was
found in the overlaying President Beaches
Formation. No ammonites were discovered in
the radiolarian-rich intcrval.
In summary, the Anchorage Formation on Byers
Peninsula ranges ffom Kimmeridgian/Tithonian
to latest Tithonian. Radiolarians belonging to
Subzone 4 beta are stratigraphically doser to
what has been dated as Kjmmeridgian than to
the ifemV/WZ/i'bearing late Tithonian/Berriasian
(Fig. 4). The data .support the conclusion that
Subzone 4 beta should be completely assigned to
the early Tithonian» althouglt Utc cvidence is less
convincing chan at Longmg Gap.
LATE JURASSIC RADIOLARIAN
BIOSTRATIGRAPHY
The biostratîgraphic u.se of Laie Jurassic ladiola-
rians has only been recognized in cite past rwenty
years starring with Pe.ssagno (1977a). Sincc then a
number of Late Jurassic radiolarian zonations have
been proposed. Therc are basically four zonations
in use for different régions of the world.
1 . The North American zonation: this zonation
dates back to the work of Pessagno (1977a). It
was completely revised b}' Pessagno et al. (1984)
and refined latcr by Pessagno et al. ( 1987b, 1993,
1994). The most recent iipdare of the North
American zonation was provided by Hull (1997).
The chronosiracigraphic calibration of radiola¬
rian zones was esrablished using ammonite, cal-
pionellid and bivalve data.
2. The Tethvan zonation: a flrst zonation was
presented by Baumgartner et al. (1980) based on
unitary associations. This zonation was conside-
rably revi.sed by Baumgartner (1984), chrono-
stratigtaphically updated by Baumgartner
(1987), and rcachcd its current State by the com¬
préhensive contribution of Baumgartner et al.
(1995a). The chronostrarigraphic calibration of
radiolarian zones was esrablished by using
ammonite, calpionellid and caJeareous nanno-
fossil âges.
3- The “Japanesc” zonations: several Japanese
scientists deveJoped zonations which are mostly
applied to western Pacific sections, but are also
usefui in the Tethys. The mosi widely u.sed zona¬
tion ha.s been developed by Matsuoka Yao
(1986) which was updated by Mat.suoka (1992,
1995b). The chtonostratigraphic calibration is
partiy provided by ammonite and calcareous
nannofossil data, but mostly relies on corrélation
with dated Tethyan and North American radiola-
rian-bearing sequences.
4. The Russian zonations: zonaiioii.s of ihe
Caucasus Région and rhe Russian Far Easr were
proposed by Tikhomirova (1988) and Vish-
nevskaya (1993). The Juras.sic zones in the
Caucasus arc calibratcd by ammonites and apty-
chi, whereas the Russian Pacific margin is poorly
dated by Buch'ta sp Lace Jurassic radiolarian stra¬
tigraphy on the Russian platform is still in îts
infancy with only one preliminary zonation avai-
lable (Kozlova 1994).
As cxplained above, we mostly applied the North
American radiolarian zonation for dating our
radiolarian samplcs. The primary, secondary and
corporéal markets of Pessagno et al (1993) that
are présent in Antarctica are li.sted in Table 1.
The application of the new Unitary Association
stratigraphy of Baumgartner et ai (1995a) is
hampered by the scarcity of Tethyan taxa.
However, there arc several .specics that have been
used in Icthyan zonations as well ('Fable 1). Fhc
occurrences of .species discussed below arc indica-
ted in Figure 8, if they were traccd in more than
onc sample. Spccies occurring in only one
sam pic arc;
- LI i\'. AcUnthodreusfiirwsus]uà',
— K 8-1 : Saitoum pagei Pessagno;
— K 12: Provunuma japonicus Matsuoka & Yao;
- K 13: Sethocapsa trachyostraca Foreman;
GEODIVERSITAS • 1999 • 21 (4)
703
Kiessling W., Scasso R., Zeiss A., Riccardi A. & Médina F.
Table 1. — Anlarctic radiolarian taxa used in published zonations.
Radiolarian marker taxa used in Radiolarian species used in
the North American zonation the Tethyan zonation
(Pessagno état. 1984,1987b, 1993,1994) (Baumgartner étal. 1995a)
Bi\/allupus
Canota hsui (Pessagno)
Hsuum mclaughiiniPessagno & Blome s.l.
Orbiculiforma lowreÿonsis Pessagno
Parvicingula blowt Pessagno
Parvicingula oolemâfii Pessagno & Blome
Parvicingula excetsa Pessagno & Blome
Parvicingula jonesi Pessagno
Praeparvicinguta vera (Pessagno & Whalen)
Perispyridium
Tethysetîa boesit (Parona)
Vallupus hopsoni Pessagno & Blome
Acaeniotyle umbilicata (Rüst) gr.
Acanthocircus fvriosus Jud
Acastea diaphorogona (Foreman)
Angufobracchia biordinalis Ozvoldova
Tethysetîa baesü gr (Parona)
Crucelta theokaftensis Baumgartner
Emiluvia chica Foreman
Emiluvia hopsoni Pessagno
Emiluvia pessagnoi Foreman
Gongylothorax tsvosus Dumitrica
Haiiodiciya (?) antiqua s.l. (Rüst)
Homoeoparonaeiia etngans (Pessagno)
Hsuum sp. atl H cuestaense Pessagno
(= Hsuum mclaughiini s.l.)
Hsuum fefiformts Jud
Loopus primitivus (Matsuoka & Yao)
Napora pyramidalis Baumgartner
Perispyridium ordtnanum (Pessagno) gr.
Podobursa spinosas.)^ (Ozvoldova)
Podocapsa amphilroptera Foreman
Protunumn inponiaus Matsuoka & Yao
Saitoum pagai Pessagno
Sethocapsa /rac/iyos/raca Foreman
Suna achlodes (Foreman) s.l.
Triactoma moxicana Pessagno & Yang
Triactoma tithonianum Rüst
Tritrabs rhodudautyhs Baumgartner
Zhamoidellum ventricosum Dumitrica
- K 14-1: Haliodictyai^) antiqua (Rüst) s.l.;
- K 23: Orbiculiforma lawreyensis Pessagno;
- K 27: Podobursa spinosa (O/voldova) s.l.
We first discuss rhe value of the North American
zonation and subsequently try co link oiir data to
rhe zonation of Baumgartner et al. (1995a) and
Matsuoka (1995b). The Russian zonations are
not discussed, sincc their stratigraphie resolution
is either too coarse or ihey consider poorly defi-
ned species.
The North American radiolarian zonation
The major pitfall of the North American zona¬
tion is the rcfcrence to species absence in strati¬
graphie assignment. As zonal boundaries are
defined by first or last occurrences of marker
taxa, the reliability of their absence bas to be cri-
tically evaluated for cach section or sample. This
can bc achieved by observing the quantitative
distribution of marker ta.xa wirhin their range
and by judging the possibility that species absen¬
ce is mercly a rcsult of océanographie, diagenetic
or stochastic bias.
As discu-ssed above, wc can rccognize the North
American Zones 3 and 4, and probably zone 5 in
Antarctica. Zone 3 was originally assigned to the
early 1 ithonian, but it Iras been demonstrated by
Baumgartner et al. (1995a) that its base may
reach down to the middie Oxlordian.
rhe base of Zone 4 was originally (Pessagno et al.
1984, 1987) calibrated by corré.sponding closely
to the first occurrence of Crassicollana intermcdia
(Durand Delga) and laie Tithonian ammonites
in Mexico and by occurring below the Buchia
piocha zone of Jones et al. (1969) in California.
704
GEODIVERSITAS • 1999 • 21 {4)
Stratigraphy of Antarctica
Table 2. — Summary of modifications in the chronostratigraphic assignment of North American radiolarian zones resulting from our
new data.
Pessagno et ai.
(1977a, b, 1984,1987,1993)
This paper
Base of Zone 5
Base of Subzone 4 alpha
Base of Zone 4
Tithonian/Berriasian boundary
early late/late late Tithonian boundary
early/late Tithonian boundary
Tithonian/Berriasian boundary?
Early Tithonian (Darwini zone)
Kimmeridgian/Tithonian boundary
Ir was thus correlated wiih thc carly
Tithonian/lare Tirhontan (sensu Gallico) bounda-
ry. Recentlyj this boundary wai lowercd co the
late early Tithoniati (Pessagno pcrs. comm.
1997; Hull 1997).
The new résides from the Antarctic sections
demand a révision of ihc chronostracigraphic
calibration ftjr the base of Zone 4 and thc base of
Subzone 4 alpha given by Pessagno er ai (1993),
Before we do so» we hâve lo check the reliability
of OUI' radiolarian âges, especiallv referring to thc
marker taxa of Pessagno étal. (1993).
The base of Zone 4 was (vriginally (Pes.sagno ei
al. 1984) dePined by the first occurrence of
Acanthocircus dicranacanthos and Vallupns hop-
soni. Since A. dicranacanthos is absent in
Antarctica» due to the high paleolaritude, the
first occurrence of che pantanelliid Vatlupus bop-
soni (Fig. 51) is crucial in our discussion. The
Austral characrer ot the radiolarians requires cau¬
tion in the interprétation of thc first occurrence
date of this spccies. Since the abundance (or pro-
bability of détection) of thc pantanelliid sub-
family Vallupinac is correlated with thc ovcrall
abiindance ot PantaneUiidae, it is very unlikely to
dctect Vallnpus hopsoni in standard residues
(about 1 g in thc Antarctic material), if pantanel-
liids make up Icss than 5% of a radiolarian
sainplc. This hict may bc partly responsible for
the erroncous corrélation of Pessagno et ai
(1993)- The abundance and diversity of panta-
nelliids was thought to decrease rapidiy with lati¬
tude in che paleolatitudinal mode! of Pessagno &
Blome (1986). Although pantauellüds siun up to
50.1% in one sample from Longing Gap, their
abundance is .strongly flucruating in Antarctica,
In Longing Gap (Fig. 3) rhe first occurrence of
Vallupus hopsoni is noied in a sample (K 20-1)
with 12.1% total pantanelliid abundance. The
samples taken frorn just 2 and 3 m below (K 18,
19) contain a rich radiolarian fauna» but yield
fcw pantancJIüds. Only the samples K 14-1 and
K 15 providc firm evidence for an âge older than
vSubzone 4 beta. They contain diverse and abun-
dant pantanelliids (15-6 and 13.8%, respcctively)
and even sonie vallupins, but no Vallupus was
detected. Our last firm ammonite évidence for
the Kimmeridgian is from between K 15 and
K 18, but our first evidence of Tithonian stems
from thclevcl of K. 18. I hus thc first appcarancc
of Vallupus hopsoni is only rcliablc within a 40
thick intcrval separating K 15 and K 20-1.
Although we do have ammonite évidence for
early Tithonian below K 20-1 (Hyhonotum
zone), we cannot rcjcct a latc Kimmeridgian âge
for rhe base of Zone 4.
The last occurrence of V. hopsoni has been used
a.s a corporéal marker within Subzonc 4 alpha. At
Longing Gap concrétion Icvcl K 33/34 is thc last
horizon containing this spccies. This horizon is
dated as middlc/latc 1 ithonian and is probably
équivalent to rhe Windhaiisenkeras internispino-
sum zone of Axgcntina. Although we are not able
to provide firm evidence for this zone in
Antarctica (see discussion above), the présence of
hopsoni in rhe W. internispinosum zone w;ei
established by Pujana (1991, 1996) in Argentina.
In the Southern Alps, Subzone 4 alpha with
V hopsoni was recorded în che lare middle to ear-
liesr late 3 ithonian Chitinoidella zone (cf.
Kiessling 1995).
Perispyridium (Fig. 5J) is the only other primary
marker taxon in Zone 4 that is présent in
Antarctica. Its last occurrence marks che top of
Subzone 4 beta. The last occurrence of rhis genus
provides a reliable datum, since Perispyridium is
common ihroughout its stratigraphie range (with
two exceptions) and suddenly disappears in the
GEODIVERSITAS • 1999 • 21 (4)
705
Kiessling W., Scasso R., Zeiss A., Riccardi A. & Médina F.
Primary Marker
Taxa
Secondary and Corporéal Marker
Taxa
BERR.
early
Zone 5
Subzone 5A
t
Parvicinguïa jonesi
NVINOHIII
early late
Zone 4
Subzone 4a
1 Ristola procera
Ristola altissima X
^ VaUupus hopsoni^
/
^arvicingula excei
Hsuum metaugh.
L
Parvicinguia colemani
Isa
Ijfjj Orbiculif. lowreyensis
Subzone 4p
Perispyridium ^
Acanthoc. dicranacanthos^
^ T
P. colemani
1
^ Parvicing. jonesi
1
KIMMERIDGIAN
_ _ _
early late
Zone 3
Subzone 3a
f
Napora burckhardti
ri
ï_Ÿ
Subzone 3p
Mirifusus guadalupensis T
1 Turanta J
Hsuum maxwelli
OXFORDIAN
early middle late
- Mirifusus baileyi
r
Caneta hsui
^ Parvicinguia t^wi
Zone 2
Subzone 2a1
Loopus
Subzone 2a2
Parvicinguia s.s. ^
Fig. 9. — New chronostfatlgraphic assignmentot the radiolarlan blostratigraphy ot Pessâgno (1977b), Pessagno et al. (1984, 1987,
1993, 1994, 1996). Our data allow a modification ol the Zone 3/Zone 4 boundary and the boundary between Subzone 4 alpha and
4 beta. The lower zones were modified foUowIng Baumgartner et al. (1995a. fig. 13). Marker taxa lhal are présent in Antarctica are
printed in bold, In this figure we use the Tithonian sensu Gallico as do Pessagno et ai: however it should be noted thaï subzone
4 beta ends betore the middle Tithonian sensu Gerlh.
sequence. However, there is a relatively thick
interval with only sparse radiolarian faiinas above
the last record of Perispyridium in K 29. The first
radiolarian sample with a sure absence of this
genus is K 30b, which is only a few meters below
the first record of the latest early Tithonian
[sensu Certh) Mendozanus zone. Hence, the top
of Subzone 4 beta i.s as.signcd to the late carly
Tithonian [sefisu Gcrth = early early Tithonian
sensu Gallico).
According to Pe.ssagno e/ al. (1987). the last
occurrence of Parincingula colemani is noted in
the upper part of Subzonc 4 alpha (corporéal
marker taxon). In Longing Gap, the last samplcs
with P colemani s.l. are above the level with first
evidence of bcrriasellid ammonites indicating
late Tithonian. Above the last occurrence of
P colemani no primary marker taxa (with the
exception of Parvicingtda joncsi Pessagno) of the
Nnrth American zonation are présent. However,
Hull (1997) used the la.st occu trente of lïsuum
mclaugblini as a secondary marker to define the
top of Zone 4. This species ts présent ncar the
rop of the Longing Gap Section (K 65) which is
assigned to the Berriasian. This would indîcate
chat the top of Zone 4 should be assigned to the
early Berria.sian, consistent with new resuirs of
Pessagno étal. (1996). However, a relatively great
faunal change is noted in Antarctica from K 60
onward, approximately consistent with the
706
GEODIVERSITAS • 1999 • 21 (4)
Stratigraphy of Antarctica
Jurassic-Creraceous boundary. Since no primary
marker taxa are présent, wc tcntatively corrclate
rhe Zone 4'Zone 5 boundary with the Jurassic-
Cretaceoiis boundary and ihc first occurrence of
Williriedellum ruesti (Tan Sin Hok) as figured in
Kiessling & Scasso (1996j pl. 2/14).
Considering the staiemcnts abovc, wc can revise
the chronostraiigraphic assignments of the North
American radiolarian zonation (Table 2, Fig. 9).
We arc currently not able to affirm whar led ro
the erroncoüs chronostracigraphic assignment of
the zones and subzone.s discusscd abovc. They
may partly be duc to the coniplcx lectonic ser-
tings of both Mexico and California.
Evidence (-rom other areas
rhe new chronostracigraphic assignment of the
Zone 3-Zonc 4 boundary is supported by new
data from Gerntany,
Recent investigations in the Upper Jnrassic of
Southern Gerrnany produced a very well-pre.ser-
ved and diverse radiolarian fauna in the
Mdrnsheim Formation (Zügel 1997) including
V hopsoni. The Mornsheim Formation is correla-
ted with the upper part of the Hybonoticeras
hybo)iotu)n zone (Zeiss 1977) équivalent to an
early early Tichonian âge. In his ongoing work,
Zügel (pers. comm. 1997) coiild recover V. hop¬
soni aiso in the cherr-bearing limestones of
Schamhaiipten (Bavaria, Southern Gerrnany).
The locality is curnently -assigned to the upper-
most Kimmeridgian (Bausch 1963).
In summary, the data from Gerrnany do support
an oldcr age for rhe Zone 3-Zone 4 boundary.
We can thus conclude that V. hopsoni Hrsi
appears vety close to rhe Kimmeridgian/
Tichonian boundary. Other reports (Matsuoka
1992, Chiari et ai 1997) on the first occurrence
of V. hopsoni do also support chis interprétation,
althoLigh they are nor directiy correlated with
ammonite data.
Zonation or Badmgariner Erwz. (1995b)
We hâve discusscd above chat the applicabilicy of
the 'Fcchyan unnary association zonation (UAZ)
is rcstricred owing to biogcographic différences.
Additionally, there is a general trend from assem¬
blages containing Tethyan taxa at the base to
assemblages with a higli degree of endemism al
the top in chc Ameghino Formation. However, a
limitcd comparison is possible, if we sum up ail
our samples from the zones and subzones of ihc
North American zonation. Three of the new uni-
tary associations of Baurngartner et al. (1995a)
werc expected to occur in Antarctica:
— UAZ l ] ‘ late Kimmeridgian-early Tithonian;
— UAZ 12; early-early laie Tithonian:
— UAZ 13; laieÿt 1 ithonian-carlicst Berriasian.
We will show below ihat UAZ 10 is unexpected-
ly also présent at Longing Gap.
At Longing Gap, our samples from Zone 3, Sub¬
zone 3 alpha (K 2'K 1 5) contain the Tethyan
taxa Acaenwtyle mnhilicata gr. (Fig. 5L), Acustea
diap h or Q go na-> Angu lob racchia bio rd i nalis^
Archaeodictyomitra minaemisy cyucelld theokajifu-
sis (Fig. .5F), Gongylothorax Javo^us (Fig. 5N'),
Haliodictya (?) antiqna s.l. (Fig. 5K), Hsuum sp.
atf- //- rnestiiensc, Napora pyramidulis. Péri'
spyridturn ordhiarium gr. (Fig. 5]). Prottoiuma
japonieuhy Saitoum pagei, Sethocapsa trachyostrara
(Fig. 5M), Triûctoma îiiexira^iOy and Zhamoi-
dellum ventricosnm. This assemblage was not
observed in the Tethys and trying to appty the
UAZ 95 Icads to ci^ntradictory rcsults. Triactoma
niexicana (samples K S-l, K 13) is prcdictcd to
range not higher than UAZ 9, but Acaeniotyle
umbïliaiut {.samples K 6, K 12, K 13. K 14-1) Is
not supposcd to occur before UAZ 10. It is likely
that the total range of T. mexicana is poorly défi*
ned in the UAZ considering the zonal as.sign-
menr oi T. niexicana ta vSubzone 4 beta by
Pessagno et al. (1989) and ics occurrence in
LIAZ 12 in ihc Southern Alps (c£ Kiessling
1995). Congylothorax favosus is not reporred
above UAZ 10 according to Baumgartncr et al
(1995a). d'bis specics was fbund unly at the very
base of the section (K 2, K 4) which may actually
be assigiied to UAZ U). The .samplc.s above K 4
are assigned to UAZ 10-11. dhcre arc not suffi*
cicni l'erhyan radiolarians to prcciscly define the
LIAZ of Baumgartner et al (1995a). However,
rhe application ofthe unpublished 127 UA range
charr on the lurnped zone 3 fauna resulrs in a
firm corrélation with UAZ 10 (Guex, pers.
comm. 1998). Tnactoma mexicana ranges up to
UAZ 11 in this recomputing.
GEODIVERSITAS • 1999 • 21 (4)
707
Kiessling W., Scasso R., Zeiss A., Riccardi A. & Médina F.
Within Subzone 4 beta thc loJlowiag Taxa used
by Baumgartncr et ûl. (1993a) are présent in
Antarctica: Acafzthocirrus furiosm (Fig. 5H),
Acastea diaphorogondy Angulobracchia hiordlnalisy
Emiliivict chicdy Rmiltivid peisagnoi s.L.
Gorgarisiitm sp., HùmoeoparonaelLt êlegavsy
Hsuum aff. cuestaedsc, Usuam feliforrnh (onJy
detected in James Ross Island). Loopusprimitivm
(Fig. 5B), Nnpora ppuynidulhy EeHspyrldium
ordinarium gr., Podoburui sphwuj s.l,, Podocapsa
amphitreptera s.l., Suna cchiodes .s.l. (Fig. 50),
TriactornU tithoniiWtmiy Iritrahs rhododaciylus
(Fig. 50.
Again, there are some contradictions applying
the unitary âs.sociation zonation. Gorgum'ium
ranges from UAZ 3-8 according lo Baumgartncr
et al. {Î995a), whcrcas Hsuum feliformis \s
rhoughr to occur not earlier than UAZ 13.
Leaving aside these problenutic taxa would rcsidt
in a correlarion wirh UAZ 10 for the assemblage,
as defined hy A. furinsus (UAZ 10-20) and
H. elegam (UAZ 4-10). However, H, ekgafis only
occurs up to the middie part nf Subzone 4 beta
at Longing Gap. Above the Ust occurrence of
H. elegtms the assemblage would be assigned to
UAZ 10-11- Again, the application of thc
127 UA range chart hclp.s to define the corréla¬
tion more precisely. Gucx (1998, pers. conim.)
States thac thc lumped Subzone 4 beta launa per-
fectly corrclares wirh UAZ 11.
Only a iVw Terhyan taxa were ('ound in the
assemblages assigned to Sub/one 4 alpha and
Zone 5: Gorgamïum sp., Hsuuni af£ cuestaensvy
Tethysetta hœsiï gi. (Fig. 5C), Triactoma tithonia-
num arc présent indîcating UAZ 10-13. A more
exact corrélation is not possible. Thus rhe pré¬
sence of UAZ 12-13 cannot be proved in
Antarctica.
The stratigraphie corrélation of the North
American zones with the UAZ can be controlled
by new data iVorn Europe (Kiessling 1995;
Chiari ci ni 1997-, Zügel 1997). V hopsoni was
reported irom UAZ 10 (Chiari étal, 1997) to
UAZ 12-13 (Ziigel 1997, cf Kiessling 1995,
1996). Two sainples from the Southern Alps bear
V. hopsoni atid lack Perhpyridimn and can chus be
assigned to the base of Subzone 4 alpha. The
sample from Ronce Serra near Fonzaso (see
Kiessling 1996 for localicy description) is from
the rransitional intcrval berween the
Ammonitico Rosso Superiore and the Maiolica
whiclî has hecu assigned to the lare middie to
earliest late Tithonian Chiünnidella zone by
Grandesso (1977). This simple (PS 13) contains
many species that make their first occurrence in
UAZ 13: Emiliivia chtca decussata .Steiger,
Obesacapsula ruscoensis umbriensis }ud,
Paronaella (?) tiihulata Steigen Pynnnhpongia
barmsteruensis (Sçeiger), and Syringocapsa ampho-
rella (Jud). On the other hand, species like
Syringocapsa spinellifera Baumgartner and
Williriedclliim crystallinum Dumttrica arc a.lso
présent, These hâve their last occurrence în
UAZ 12 and UAZ 11, re.spcctivcly. Thcrclbre,
PS 13 is preliminarily assigned to UAZ 12.
In summarv" thc total range of U hopsoni is from
UAZ 10 to at Icast UAZ 12. Tlie related torm
VallnpiL^ jafwnuiis has been shown by Matsuoka
(1998) to range up to thc early Berriasian
(UAZ 13). UAZ 10 radiolarian assemblages can
bc obsciwcd frojTi the base of the Longing Gap
Section (Kimmeridgian) up to a horizon thaï has
been dated as early Tilhonian by ammonites.
Baumgartner et al. (1995a) indicared a laïc
Oxford!an-early Kimmeridgian âge for UAZ 10.
Although Baumgartner er///. (1995a: 1033) pro¬
vide good évidence for this âge, the âge of the
succeeding UAZ 11 is much less well defined.
Considering rhe rcsults above, we can conclude
thac UAZ 10 ranges up to ai least ilie latest
Kimmeridgian Beckeri zone. The new corrélation
of UAZ 10-13 with thc North American zona¬
tion and their clironoso'angraphic assignaient are
indicaied in Figure 10.
Zonation of Matsuoka (1995b)
The comparison with Matsuoka (1995b) is ham-
pered by che rarher coarse stratigraphie résolu¬
tion of Matsuokas Latc Juras.sic zonation. Only
rhe Pseudodictyoniitra priwitiva zone can be tra-
ced in Amanctica, owing to the absence of other
age-diagnosiic taxa, l'his intcrval zone is defined
by the last occurrence ol Hsuum W{4.xu>elli at its
base and the first occurrence of Pseudodictyoniitra
carpatica (Lozynyak) ai its top. It is supposcd to
range from the early to the middie Tithonian.
708
GEODIVERSITAS • 1999 • 21 (4)
Scratigraphy of Antarctica
NORTH
TETHYAN
AMERICAN
ZONES
ZONES
(UAZ 95)
BERRIASIAN
5
i Q
Q
1 O
_co
4 a
>
TITHONIAN
°§-
<0
4p
11
l’a
<D
-1
k 5
KIMMERIDGIAN
3 a
10
Fig. 10. — Corrélation of the North American (Pessagno et al.
1993) and Tethyan (Baumgartner et al. 1995a) zonations for the
Kimmeridgian/Tithonian Inlerval.
According lo Matsuoka (1995a, fig. 3)i the
/?priniitivii zone ranges trom the ba.se ol Zone 3
CO the top of Subzone 4 beta. Con.sidering our
resuirs and the eorrclation chait of Baumgartner
et al. (1995a, Hg. 13) this would imply a total
range ol the P pYtrn'nhM zone from rhe middle
Oxfordian to early 'J'ithonian. However, as rhe
last occurrence of Hsuum maxwelU is noTcd
within upper Subzonc 3 alpha according to
Pessagno et al. (I993)i we suggest thar rhe
Pmidodictyomitm primitmi zone starts in rhe lare
Kimmcridgian. Since Psnuiodkîyomitra carpatica
is absent due ro biogeographical dilferenccs, the
top of rhe Pseudoditîyomiim prlmttiva zone can-
not be defined.
Although the total range of Loopiis prîmitiinis
(= Pseudadrayumiîra pritaitiva) is uncerrain
according to Matsuoka (1995b) its major occur¬
rence is dcfinitely within the I^eudodiciyomitra
primitiva zone. At Longing Gap and Livingston
Island, primitivus is found in Subzonc 4 beta
and at the verv base of Subzone 4 alpha, les first
occurrence coincidc-s with the first occurrence of
V hopsoni and iis lasr occurrence is noted slighrly
above the lasr occurrence of Perispyridium. This
agréés with a latest Kin^meridgian to probably
middle Tirhonian âge and is consistent with
Matsuokas chronostratigraphic assignment for
the Pseudodictyomitra primitiva zone.
CONCLUSIONS
New paleontological data from two Upper
Jurassic localides on the Ancarctic Peninsula allow
the élaboration of a combined ammonite and
radiolarian strarigraphy, providc a high stratigra¬
phie résolution and allow to révisé current chro-
nostradgraphic calibrations of radiolarian zones.
The Ameghino Formation ai Longing Gap
ranges from the Kimmcridgian ro ihe early
Berriasian, vvhereas the Anchorage Formation at
Byers Peninsula ranges from rhe Kimmcridgian/
Tirhonian to the latest Tithonian. Zone 3>
Subzone 3 alpha. Zone 4, Sulrzones 4 beta and
4 alpha and probably the base of Zone 5 could
be traccd at Longing Gap, whcreas on Byers
Peninsula only Subzone 4 bera assemblages are
well cstablished.
The chronostratigraphic calibration of Zone 4
and its subzones as used in the North American
radiolarian zonation (Pessagno ci al. 1993) is
reviscd herein. The base of Zone 4 is assîgncd to
ihe Kimmeridgian/Tithonian boiindary interval
and ihe base of Subzonc 4 alpha is located within
the early Tithonian.
The North American radiolarian zones can be
correlated with the unitary associadon zonadon
(Baumganner et ai 1995a). Uppermosr Zone 3>
Subzone 3 alpha correlates with UAZ 10 and the
base of Zone 4 agrées with LIAZ 11 in Antarc¬
tica. Higher up in ihe .scquences no corrélation
with the UAZ 95 is possible owing ro increasing
biogeographical différences. Evidence from ihe
Southern Alps suggests that Valltipm hopsoni
ranges iip co at least UAZ 12.
The itïterval zonation u.sed by Pessagno et ai
(1993) ha» rhe adrantages lo be applicable to tro¬
pical as well as high latitude sertings and lo rely
on only a few âge diagnostic radiolarians,
However, rhe absence of market taxa bas lo be
carefully proved, in order ro overcomc prcsemi-
tional, paleoceanograplfic and stochastic biascs.
With the chronostratigraphic correcdons in this
paper and thosc of Baumgartner et al. (1995a),
wc hope that the Nojth American zunadon can
now bc applicd everwhere wirhout contradic¬
tions. A major task for the future will he the défi¬
nition of the Zone 4-Zone 5 boundary with the
aid ofhigh latitude radiolarians.
GEODIVERSITAS • 1999 • 21 {4)
709
Kiessling W., Scasso R., Zeiss A., Riccardi A. & Médina F.
Acknowledgements
This study is a coiitribunon to IGCP 381 (South
Atlantic Mesozoic Corrélations). Excellent logis-
tic support in rhe field was provided by the
Instiruto /\nr3rtico Argenrino. Financial lunding
was provided by the Gennan Research
Foundation and the Studicnstiitung des deut-
schen Volkes. We thank Mrs. B. Leipner and
Mrs. C. Sporn for rhe préparation of Silicon casts
and photographs of ammonites.
Spela Gorican and Jean Guex reviewed rhe
manuscript and provided important suggestions
that helped to improve the manuscript conside-
rably. Jean Guex is especially tlianked for his help
CO defmc the UAZ of the radiolarian assemblages
more accurately.
REFERENCES
Barker P. F.. Dalziel I. W. D. & Storey B. C.
1991. — l'cctonic development of the Scotia arc
région: 21^-2*48. rn Tingey R. J. (ed.), The Ceology
oj Anttirctica. Clarendon Press, Oxford.
Baumgarcner P. O. 1984, —A Middle Jurassic-Early
Cretaceous low-latitude radiolarian wjnation hased
on Uniîary Associariuns and âge of Tcrhyan radio-
larires. hclogue (leoh^iaie Heiveîhiell: 729-837.
— 1987. — Age and genesis of l'erliyan Jurassic
Radioiarites. Eetoune Ceoloiiicai' Helvetine 80:
831-879.
Baumgarcner P. O., Bartolonî A, Carter H. S.» Conri
M-, CorreSc G., Daru-lian T.> De Wever P.,
Dumiirica P., Dumirrica-Jud R,, (iorican S., Guex
J., Hull D. M.> Kiro N., Marcucci M,, Mat-suoka
A., Murchey B., O’Oogberry 1... Savary ).,
Vishnevskaya V., Wldz D. Ÿan A. 1995a. —
Middie Jurassic to Early Oeraceous radiolarian bio-
chronology of Fethys hased on unitar)' associations.
Mémoires de Géologie 23 : 1013-1048.
Baumgartncr P. O., De Wever P. Sc Kocher R.
1980. — Corrélation of Terhyan Lare Jurassic-
Early Cretaceous radiolarian events. Cahiers de
Micropalèontidogie 2 :23-72.
Baumgartncr P, O i Marrire T.., Gorican S.*
O’Dogherty L.. Erba E. & Pillevuir A. 1995b. —
New Sliddle and Llpper JurA>.slc radiolarian assem¬
blages cü-oceurring with ammonites front the
Southern Alps (Northern Italy). Mémoires de
Géologie 23 : 737-750.
Bausch W. 1963. — Dcr obère Malm an der unteren
Altmühl. Erlanger geologisihe Abhandlungen 49:
3-38.
Berckhemer F. & Hôlder H. 1959. — Ammoniten
aus dem Oberen WeiBjura Süddeutschlands.
Beihefie zum Geolo^schen Jahrhuéh 35: 1-135-
Ribby J. 1966. — The Stratigraphy of part of North-
Easr Graham Land and the Jamc^s Ross Island
Group. Briiish Atnaretic Survey^ Scientific Reports
53: l 37.
Biro-Bagoczky L. 1984. — New Conrribuvions to the
Palcontology and Siraiigraphy of some Tithonian-
Ncocomian outttops in the Chilean part of the
Andean range between 33*^45' and 55'^ Lat. S.
I.G.QP.Pnject ÜÎ7Î: Cireum-PactficJurassic Report
No, A Spécial Paper .3: 1-15.
Chiari M., Cora>e C.i Mauucci M- & Nouoli N.
1997. — Radiolarian biosrratigraphy in the sedi-
mcniary covet of rhe ophiolites of soiuh-western
Tuscany C^entral Italy. Eclogue Gcologkav fielvetiae
^ 90: 55-77.
Collignon M. 1959-1960. — Atlas des Eossilcx caracté'
ristiques de Madagascar. Fascicule V (Kimmc-
lidgien) and VI fTiihoiuque). Service Géologique,
Tananarive, feuilles 96-175.
Crame J. A,, PIrrie D., Crampton J. S. & Duane
A. M. 1993. — Stratigraphy and régional signifi-
cance of the Upper (urassic-Lower Crctaccous
Byers Group. Livingston Island, Aniarctica.
Journal oj'the Çeological Society of London 150:
1075-1087.
Doylc P. & Whivham A. G. 1991. — Palaeo-
cnvnonment.s of the N’ordenskjôld Formarion; an
Antarctic Lace Jura.ssic-Early Cretaceous black
shaie-tuff sequence, tv Tyson R. V. & Pearson
T. M. (cd-s), Modem and Ancicni Continental
Shelf Anoxia, Geotogical Society of London, Spécial
Publication 58: 397-414.
Enav R. &: Carvou E 1997. — Ammonite faunas and
palacoblogcography of the Himalayan belt during
the Jurassic: initiation of a Laie Jurassic aiKstral
ammonite fauna. Palaeogcogtaphyy Palaeoclimato-
logy, Palacoeçoiogy 134: l'38.
Farquharson G. W. 1982. — Late Mesozoic sedimen-
union in the nnrihcrn Anrarccic Peninsula and its
relationship tn the Southern Andes. Journal of the
Geologkal Society of London 139: 721-727-
— 1983. — The Nordeiisktôld Formation of the
norchern Antarctk Peninsula; an L.lpper Jurassic
radiolarian rnudstonc and rufl .scqucnce. British
Antarctk Snrvcy Bulletin 6f): 1-22.
feruglio E. 1936. — Palaeontographica l’atagonica.
Memorie deli'ïstituTo Geologico delta Reale Uuiversita
df Padova 5/1 ( : 1-384.
Grandesso P. 1977. — Cîli strati a ptecalpionellidi del
Titoniano e. i loro rapporti con il Rosso
Ammonitjco Veneto. Memorie di scienze geologjche
.32:1-15.
Hervé F., l.obaro J.. Ugalde L. Pankhurst R. J.
1996. — The gcology of Cape Dubouzec, northern
Aniarcric Penin.sula: conrincntai basement ro the
Triniry Peninsula Group? Antarctic Science 8:
4U7-414.
Hillebrandt A. V., Westermann G. E. G., CaJlomon
710
GEODIVERSITAS • 1999 • 21 (4)
Stratigraphy of Antarctica
J. H. & Detterman R. 1992. — Ammonites of the
circum-Pacitic région: 342-359, in Wesiermann
G. E. G (ed.), Th^ Jurassk of ihe Circuni'Padfic.
Cambridge Universiiy Press, Cambridge.
Hôlder H. 1955. — Die Ammoniten-Gatrung
Taramelliceras im südwesideutschcn Jura.
Palaeontûgtaphica I06(A): 37-153.
I lowlett P. J. 1989. — l.ate Jurassic-Early Cretaceous
ccphalopods ol eastern Alexander Island,
Antarctica. Speaal Popen in Pnlntoiitolo^ 41: 1-72.
Mull D. M, 1995. — Morphologie dieersity and
paleogeogr^phic significance of the Family
Parvicingulidae (Radiolaria). Mtcropoleontology 41:
1-48,
— 1997. — Upper Jura.vsic Terhyan and Southern
Borea! radiolarians froni easi-ceniral Mexico and
Stanley Mountain, California, western North
America. Micrùpaleontûlo^> 43. .supplcmenr 2:
1 - 202 .
Indans J. 1954. — Einc Aminonitenfauna aus dem
Unter-Tithon der argencinischen Kordillere in Süd-
Mendoza. Palaeontogmphica 105(A): 96-132,
Jones D. L., Bailey E. H. A.' fmlay R. W. 1969. —
Structural and .stratigraphie signiflcance of the
Buchia zones in the Colyear Springs. Faskenta area
California. US, Cieologival Survey Professional
Papers Cy47-A: 1-24.
jordan R. 1971. — Mcgalo.ssilien aus dern Antalo-
Kalk von Nord-Aihiopien. Beihefte zum
Geohgiscfmi Jahrhuch 118: 141-172.
Kic.ssling W. 1995. — Pafëkoloj^ischc Vawertbarkeit
oherjnrasdsi'h-unîerkretaiBchtr Rodiolarienfaunen
mit Beispide}! Uns AntOrhh\ Omon tind Südalpen.
ünpublishcd Ph.D. Thcçis, 465 p-
— 1996. — Fades charâcterization of mid-Mesozoïc
deep warer sédiments by quantitative analysis of
siliceous microfaunas. Fuluh 35:
— 1999. — Lare Jurassrc radiolarians from the
Antarciic Peninsula. Micropnlcotnology 45, supplé¬
ment 1: 1-96.
Kiessiing W. & Stasso R. 1996, — Ecological pers¬
pectives ofl.afc Jtiiasslc radiokrian faunas from the
Atitarcck Peninsula: 317'326, in Riccardi A. C.
(ed.), Aeivnnces in Jurussic Research. Transtec,
Zurich.
Koziova G. E. 1994. —Radiolarian marker horizons
for the Mesüzoic of Pechora Basin and the Barents
Shcif. ïnterRtul VII Abstracts. 0.saka: 69.
Kranrz F. 1928. — La fauna dtl Tituno superior y
medio de la Cordillera Argentina en la parte méri¬
dional dé la provincia de Mendoza. Acta de la
Academia Nacional de Ciencias de la Republicn
Argentina 10: 1-57.
Krishna j., Kumar S. & Singh I. B. 1982. —
Ammonoid stratigraphy of the Spiti Shale (Upper
jura.ssic), Tethys Himalaya, India. Neucs Jahrhuch
für Géologie and Palëontologicy Monatshefte
1982/10: 580-592.
Leat P. T. & Scarrow J. H. 1994. — Central volca-
noes as sources for the Anrarctic Peninsula Volcanic
Group. Antarctic Science G: 365-374.
Leanza H. & Zeiss A. 1992. — On the ammonite
fauna of the liihographic ümestones from the
Zapala Région (Neuquen province, Argentina),
with the description of a new genus. Zentralblatt
fur Géologie and PtilUontoiogiey Tcil T, 1991/6;
1841-185a
[.ttpeirone J. 199"^. — Estudio geolégico del area del
cerro Continuaciân, isla Livingston, Antàrttda.
l'rabajo lanal de Lkcnciatura, L^niversidad de
Buenos Aires, unpublishcd, 92 p.
Macdonald D. I. M., Barkcr P. F., Garrct S. W.,
Incson j. R. Pirric D. 1988. — A prcliminaiy
a.sses.srnciu of the hydrocatbon potcntial of the
Larsen Basin, Antarctica. Marine and Petroleum
Geologr 5*. 34-53.
Maesuoka A. 1992. — Jurassic and £,iriy Cretaceous
Kadioîarians from Lcg 129 Sites 800 and SOI
Western Pacific Océan. Proceedtng of the Océan-
Dtill/ng Prograuh Scicnsific Resulzs 129; 203-220.
— 199Sa. — Late Jurassic tropical Radiolaria:
Valltipus and its rdaicd forms. PaUieogeography,
Paliieoelimatology, Palaeoecolog\i 119: 359-369.
— 1995h, — Jurassic and Lower Cretaceous radijila-?
rian zonation in [apan and in the western Pacific.
ThchlandArc4:'m-\^^,
— 1998. — FauOiil compositiort of carliesr Creta-
CCÜU5 (Berriasian) radiolaria from the Mariana
Trench in the western Pacific. Neivs of üsaha
Minopaieofitotogh'ts,S]yec\x[Vo\\xmt 11: 105-187-
Matsuoka A. & Yao A. 1986. — A newiy propo.sed
radiolarian zonation for the Jurassic of Japait.
Marine Alieropalnnstology 11:91-105.
Médina F., Fourcade N. H. & del VaÜe R. A.
1983. — La fauria del Jurisico superior de! Refugio
Ameghino y ceiTo el Manco, peninsula Aniartica,
Instituro y\ntàrnro Argentitio Contrihuciàn 293:
M8.
Médina F. Ramos A. 1981. — Gcologla de las
inmediaciones del refugio Ameghino (64”26’ S-
58“59' O). Tierra de San Martin, peninsula
Antarrjca. 7” Conii^resso Geolôgico Argentina Actas.
San Luis 11: 8:^1-882.
O'DoghcTty L.. Baumgartner P. O., Sandoval |.,
Martin-Algaira A., Pillevuit A. 1995. — Middle
and Upper Jurassic radiolarian assêinblagcs co-
üccurring wiih atnmoniies hojn the Sunbetic
Rcalm (Southern Spain). Métnoires de Géologie 23:
717-724.
Ü'Dogherty L.. Sandoval J.. Marrin-Algarra A. &L
B.aumgartricr P. O. 1989. — La.s lacic.s con radiola-
rios del Jurâsico .subbético (CordilJera Bctica, Sur
de Espana). Revista Socirdad Mexicana Paleomologia
2: 70-77.
Olivero E. B., Malagnino E. C., Rinaldi C. A. &:
Spikermarm J. 17 1980. — Cefalopodos Jurasicos y
Neocomianos hallado en sedimentitas del Cretacico
Superior de la isla James Ross, Antartida. Actas 11
GEODIVERSITAS • 1999 • 21 (4)
711
Kiessling W., Scasso R., Zeiss A., Riccardi A. & Médina F.
Congrew Argeniltw de PaUonrolvgia y Bioatrati-
grapa. y î Congrew LtüinoarnerictViQ de Buleon-
Tologùl V; 89-102.
Oppel A. 1863- — Ueber jura^skche OphaJopoden.
Palaontobgische Mirtciiufigcn nus chw Muséum des
Kornglkh Bayerkchm Siaate^ 3; 1 U 266.
Pcssagno E. A. Jr. 1977a. — Upper jiiras.sic
Radiolarîa and radiolarian hio.straiieraphy of rhe
California Coast Ranges. Mu'ropüïeontology 23:
56-113.
— 1977b. — Lower Cretaceous radiolaiian biostraci-
graphy of the Créât Valley Sequence and
Franciscan Coniplex, California Cnast Ranges.
Ciishmav Poundudov for Foraniiniferal Research,
Spécial Publication 15: I-8“.
Pcssagno E. A. Jr. 6i Blome C. D. 1986. — Faunal
affiniries and teaonogenesis of Meso/.oic rock.s in
the Blue Mountain Province (d ca.stcrn Oregon and
western Id.aho. U,S. CieologicM Sun>c\ Professioneil
Papers 1435: (»5-78.
Pessagno E. A. Jr., Bionic C. D. & Longaria J. F.
1984. — A revised radiolaifan zonation for the
Upper Jurassic ol western Norrh America. Bulletbis
ofArnent'iju Pabonrologif 9FI^IQ: 1-51.
Pessagno E. A. Jr.. Blomc C. L).. Carrer E. S., MacLeod
N., Whalen P. À. 1987b. — Srudics of rhe Norrh
American Jurassic Radiolaria. Pi. 11: Prclitninary
Radiolarian Zonation for the jura.ssic of North
America. Cushmon Fomtdatwii for Foramiruferat
Research, Spécial l’ublication 23/2: 1-1 H,
Pessagno E. A. Jr., Blomc C. D., Hull D. M. 8c Six
W. M, 1993. — Jnrassic Radiolaria trom the
Joséphine «iphiolire and oveclying strata. Smith
River suhierrant (Klimath Moumains), norihwc.st-
ern Caliloruia and soiithwcstern Oregon.
Microfutleonlofogy 39; 93-166.
Pessagno E. A. ji.» (.'antu-Chapa A., Hull D, M.> Ogg
J. G. Uriutiu-Fucugauchi J. 1996. — New data
from North America on the placement ol the
Jurassic-Cretaceous bouudary. Boletim do 4th
Simpo^io soh'e Crctdcco do BrasiL ï 5-20.
Pcssagno F.. A. Jr., Hull D. M. & Pujana 1. 1994. —
Corrélation of circum-Pacific upper Tithonian
Boréal and Tethvan strata; synthesis of radioFariaii
and ammonite biositaiigraphit and chiono.straii-
graphic data. Geobios^ Mémoire Spécial 17 :
395-399.
Pessagno E. A. Jr.. Longoria J. F., Macleod N. 8e Six
W. M. ]987a. — Upper Jurassic (Kimmcridgian'
upper Tithonian) Pantanelliidae from the Taman
Formation, east-cenrcal Mexico: fectono-
stratigrapbic. chrono5trarigr.iy>hiL. and phylogcnciic
implications. Cushman Faufidation for Forarntui-
ferai Research, Spécial Publication 23/1: 1-51.
Pessagno E. A. Jr., Six W, M. ôc Yang Q. 1989. -—
The Xiphostylidae Flacckcl and Parvivaccidae
n. fam. (Radiolatia). Irum che Noith American
Jurassic. Micropaleontoiogy 193-255.
Pirrie D. 8<r Crame J. A. 1995. — Late Jurassic
palaeogeogruphy and anaerobic-dysaerobic sédi¬
mentation it! the iiorthern Anturcfic Penin.sula
région. Jourutil of the Geologicn! Boàety of London
152:469-480.
Pujana l. 1989. — Sirarigraphical di.stribution of the
multicyrtids Na.s.sellariina (RadioLuia) at the
Jurassic-Cretaceous bouiidaty in the Neuquén
Basin. Argcnrina. ZenintUdatt fur Géologie und
Paliiontologie, Fcil h 1989: 529-568,
— 1991. — Pamaticlliidae (Radiolaria) from rhe
J'irhonian of the Vaca Mueria Forntation,
Ncuquén, Argetuina. Ar/io jahrbuch fUr Géologie
und Paldonwmgtr Ahhandlun^H 180: 391 -408.
— 1996. — Occurrence of V'aliiipinae {Radiolaria) in
the Neuquen Ba.sin; Binstrarigraphic implications
459-466. in Kictardi A. C. (ed.). Advances in
Jurassic Research. Tran.Mtx. Zurich.
Santisceban M. 190/. — Anàlhi^ esiratigràfico de la
Forpjcn ion Arntghino A fiera de L.onging Gap,
PtnUuida Antàrtica. Trabajo Final de Ltcenciatura,
Univer.sidad de Buenos Aires, unpublished» 101 p.
Scasso R. A., Grunenberg 'I. &: Bausch W. M.
1991. — Mineralügical and geochemical characte-
rizaiion ot tbc Amegltino Formation mudstoncs
(Upp'.T Jura.ssic, Aniarciic Peninsula) and its .strati-
grapbtcal, diagcncrical and paleoenvitonmental
meamng. PoLvfonchurig^9: 179-198.
Scasso R. À. 8c: Villar H. J, 1993. — Geoquiniica y
minctalogia como herramianias del an.alLsi.s oleo-
gcneiico-diügcntico V cstratigrafica-paleoanibiental
de utJA potencial roca madré de pecroleo: el caso de
la Formaccion Ameghiruï en I.t cucnca de l-arsen,
PeninsLila Anrartica. Xll Congresso Geologico
Argentino y il Congreso de Expïoraciàn de
îîidrocarlmros AeUh 1: 412-4.V).
Smellif J. L., Davics R. F-, S, 8^' Thomson M. R. A.
1980- — Geology nf .i Mesozoie intra-arc sequence
on Byer.^ Penin.sula, l.îvingfton Jsland. South
Sfictland Islands. Britisb Antnrcric Survey Btdletin
50:55-76.
.Sparh L F. 1927-1933. — Révision of the Jurassic
cephalonod fauna of Kachh (Cuich/. Mernoirs of
the Geological Survey of India, Palaeontologia Indien,
New Sériés 9: 1-945.
Steiger P. 1914. —Additionai note.s on the launa of
rhe Spiti Shales. Mernoirs of the Geological Sumy of
India, Palaeontologia Indien, Séries XV, 4/2:
457-511.
Sievens G. R. 1997. — The Lare Juras.vic ammonite
iâuna of New Zealand. Jnsriîute of Geohgical and
Nuclear Sciences, Monographs 18: 1-217-
Tavera J. J. 1970. — Fauna Tiioniana-Neocomiana
de la Isla Livingston, Islas Shetland del Sur,
Antarrica. Serin cientifica Imtnuto Antàrtico Chileno
1/2: 175-186.
Thomson M. R. A. 1975. — Upper Jurassic Xlollusca
from Carse Point, Palmer Land. Btiiiji .■\ntarctic
Survey, Bulletin Ai-Al: 31-42.
— 1979. — Upper Jurassic and Lower Cretaceous
712
GEODIVERSITAS • 1999 • 21 (4)
Stratigraphy of Antarctica
ammonite faunas of the Ablation Point area,
Alexander Island. British Antarctic Survey, Scientific
Reports 97: 1-37.
— 1982. — A comparison of the ammonite faunas of
the Antarctic Peninsula and Magallanes Basin.
Journal of the Geological Society of London 139:
763-770.
— 1983. — Late Jurassic ammonites from the Orville
Coast, Antarctica: 315-319, in Oliver R. L., James
P. R. & Jago J. B. (eds), Antarctic Earth Science.
Australian Academy of Sciences, C’anberra and
Cambridge Univer.sity Press, Cambridge.
Tikhomirova L. B. 1988. — Radiolarians of the Far
East. Newsletters in Stratigraphy 19: 67-77.
Villar H. J., Scasso R., Trigüis J. A. & Mello M. R.
1993. — Geochemical évaluation of mudstones of
the Ameghino Formation (Upper Jurassic-Larsen
basin-Antarctic Peninsula) considered as potential
hydrocarbon source rock. .3. Congreso Latino-
americano de Geochimica Organica: 22-25.
Vishnevskaya V. S. 1993. —Jurassic and Cretaceous
radiolarian biostratigraphy in Russia. Micro-
paleontology^ Spécial Publication 6: 175-200.
Weaver C. E. 1931. — Paleontology of the Jurassic
and Cretaceous of west central Argcntina. Memoirs
ofthe University of Washington 1: 1-469.
Whitham A. G. 1993. — Faciès and depositional pro¬
cesses in an Upper Jurassic to Lower Cretaceous
pelagic sedimentary sequence, Antarctica.
Sedimentology 40: 331-349.
Whitham h. G. & Doyle P. 1989. — Stratigraphy of
the Upper Jurassic-Lower Cretaceous Nordenskjôld
Formation of Graham Land, Antarctica. Journal of
South American Earth Sciences 2: 371-384.
Zeiss A. 1968. — Untersuchungen zur Palaontologie
der Cephalopodcn des Unter-Tithon der Südlichcn
Frankenalb. Bayerische Akadernie der Wissenschafien,
Mathematisch-Naturwissenschaftlicbe Klasse,
Abhandlungeti, Neue Folge 132: 1-169.
— 1971. — Vergleich zyvLschcn den epikontinentalen
Ammonttenfaunen Athiopiens und Süddeutsch-
lands. Annales Instituti Geologici Publici Elunzarici
54: 535-545.
— 1977. — Jurassic stratigraphy of Franconia. Suitt-
garter Beitrâge zur Naturkunde^ Sérié B, 31: 1-32.
— 1979. — Neue Sutnerien-Funde aus Ostafrika.
Ihre Bedeutung fur Taxonomie und Phylogénie der
Gattung. Palàoniologische Zeitschrift 55: 259-280.
— 1986. — Comments on a tentative corrélation
chart for the most important marine provinces at
the Jurassic/Cretaccous boundary. Acta Geologica
Hungarica 29: 27-30.
Zügel P. 1997. — Discover)'^ of a radiolarian fauna
from the Tithonian of the Solnhofen area
(Southern Franconian Alb, Southern Germany).
Paliiontologische Zeitschrift 7 1: 37-49.
Submitted for publication on 24 Eebmary 1998;
accepted on 24 June 1998.
GEODIVERSITAS • 1999 • 21 (4)
713
Preliminary radiolarian biostratigraphy across
the Jurassic-Cretaceous boundary
from northwestern Turkey
Figen A. MEKIK
Department of Geology and Environmental Geosciences,
Northern Illinois University, DeKalb, Illinois 60115 (USA)
figen@geol.niu.edu
Hsin Yi LING
Department of Geology and Environmental Geosciences,
Northern Illinois University. DeKalb, Illinois 60115 (USA)
jlingl @ gateway.com
Sevinç ÔZKAN-ALTINER
Marine Micropaleontology Research Unit, Department of Geological Engineering,
Middie East Technical University, 06531 Ankara (Turkey)
altiner@rorqual.cc.metu.edu.tr
Demir ALTINER
Marine Micropaleontology Research Unit, Department of Geological Engineering,
Middie East Technical University, 06531 Ankara (Turkey)
demir@rorqual.cc.metu.edu.tr
Mekik F. A.. LIng H. Y.. Ôzkan-Altiner S. & AHiner D. 1999. — Preliminary radiolarian bio¬
stratigraphy across the Jurassic-Cretaceous boundary from northwestern Turkey. in De
Wever P. & Caulet J.-P. (eds), InterRad VIII, Paris/Bierville 8-13 septembre 1997,
Geodiversiias2A (4) : 715-738.
ABSTRACT
rhis is the first study from Turkey where radiolarians from calcareous
sequences of che Sakarya Continent are tesred in the délinéation of the
Jurassic'Creraceous boundary. The Sakarj'a Continent, which comprises rhe
Southern parc of northwest Turkey, was a Jurassic-Early Cretaceous carbona¬
te platform micro-continent distant from terrcstrial sedirnem influx. Jt was a
site of pelagic carbonate déposition wiih abundant calcareous and siliccous
microfossil input. Among 44 mcasured stratigraphie sections of die jurassic-
Lower Cretaceous deposits of rhe Sakarya Conrinent, four continuous sec¬
tions (MK, KEL, AÇ, ÇD) which encompass the Tithonian-Berriasian
boundar)' were selected for study. However, due to poor préservation and
calcification of radiolarian faunas» only seaion KEL produced rich and well-
preserved radiolarians. This section is 600 meters in thickness and spans rhe
upper Tithonian-lower Berriasian interval. In addition to radiolarians, sec-
KEYWORDS
Radiolarians,
Jurassic-Cretaceous boundary,
northwest Turkey,
calpionellids,
calcareous nannofossils.
GEODIVERSITAS • 1999 • 21 (4)
715
Mekik F. A., Ling H. Y., Ôzkan-Altiner S. & Altiner D.
tion KEL contains abundanr calpionellids, calcareous nannofossils, bcnthic
foraminifera and calcareous algae. The upper part of this stratigraphie section
is made up of rhe Sogukçam Limestone which lithologically resembles the
Bianconc and Maiulica ^ormarions in the Umbria-Marche Région ol Iialy.
The besü préservation and richest radiolarian faunas were observed from the
Sogukçam Limestone in section KEL. This is significanc becatise niany radio-
larian studies as well as studies on magneiostratigraphy, calcareous nannofos¬
sils and calpionellid biostratigraphy in the l ethyan realm hâve been carried
out on the Biancone and Maiolica formations. The rapid sédimentation rate,
pelagic microfacies and well prc.served non-calcified radiolarian faunas make
section KEL idéal for the invesrigarion of the Jurassic-Cretaceous boundary
with radiolarians. The corrélation betsveen radiolarian faunas and co-occur-
ring calpionellids and calcareous nannofossils in section KEL can be compa-
red with sîmilar biostratigtaphic studies from the Bianconc and Maiolica
formations in Italy. The calcareous nannofossils ïn section KEL somerimes
attain rock forniing abundance, and rhe first appearancc of nannoconids as
well as their First abundance peak arc rccognizcd in this section. Throughout
the présent study, the boundary bccwecii Calpionellid standard zones A and
B is considered as the Tichonian-Berriasian boundary. l*he close sampling
interval, 15-20 meters. provides excellent resolution in documenting the First
occurrences of numerous Cretaceous radiolarian species. l'hese First occur¬
rence datum points for radiolarian taxa are nor concurrent. Due to the leFi-
ned résolution oF dating, a stepwise appearance of Cretaceous radiolarian
Faunas in section KEL is clearly obser\^ed; however, radiolarians do not deli-
neate the Jurassic-Crctaceous boundary because a marked synchronous Fau-
nal turnover docs not exist.
RÉSUMÉ
Étude biostratigraphique préliminaire des radiolaires à travers la limite juras¬
sique-crétacé du nord-ouest de la Turquie.
Cette étude est la première de Turquie où les radiolaires ont été analysés
pour décrire la limite jurassique-crétacé dans des séquences calcaires du
continent de Sakarya localisé dans la partie sud de la Turquie nord-occiden¬
tale. Le continent de Sakaiya. a été une plate-forme isolée dans le jurassique
et Crétacé inférieur et un lieu de depot des carbonates pélagiques contenant
des microFossiles calcairCvS et siliceux abondants. Parmi les 44 coupes strati-
graphiques qui ont été mesurées dans les dépôts jurassiques et crétacés du
contineni de Sakarya. quatre coupes (MK. KEL, AÇ. ÇD) traversant la limi¬
te tithonique-berriasien ont été choisies pour cette étude, Néanmoins, à
cause de la mauvaise présersation cr de la calciFicarion de l.i faune de radio¬
laires, seule la œupe KEL a produit des radiolaires bien préservés et abon¬
dants. L’épaisseur de cette coupe est de 6Ü0 mètres pour Fintervallc du
Tithonien supérieur-Berriasien inférieur. En plus des radiolaires, la coupe
KEL contient en abondance des calpionelles, des nannofossilcs calcaires, des
foraminiferes bcnchiquc.s et des algues calcaires. La partie supérieure de cette
coupe est représentée par le Calcaire de Sogukçam qui ressemble par sa litho¬
logie aux formations de Biancone et Maiolica dans la région d'Ombrie-
Marche, en Italie. La faune de radiolaires la plus riche et la mieux préservée a
été retrouvée dans le Calcaire de Sogukçam de la coupe KEL. Cette observa¬
tion est importante parce que plusieurs études sur les radiolaires comme sur
716
GEODIVÊRSITAS • 1999 • 21 (4)
Radiolarians from NW Turkey
MOTS CLÉS
Radiolaires,
limite jurassique-crétacé,
Turquie du nord-ouest,
calpionelles,
naniiofossilcs calcaires.
la magnétostratigraphie et la biostratigraphie des nannofossiles calcaires et cal-
pionelles, dans le domaine de la féthys, onr été efïcctiiccs sur les Formations
de Biancone et Maiolica, Le taux de sédimentation élevé, le microfaciès péla-
gique cr la Faune de radiolaires non-calcifiée et bien préservée rendent la coupe
de KE,L idéale pour décrire la limite jurassique-crétacé avec les radiolaires. La
corrélation entre la faune de radiolaires et la présence conjointe de calpionelles
et de nannofossiles calcaires dans le meme matériel en Turquie peut erre com¬
parée avec les études biostratigraphiques similaîres des formations de
Biancone cr Maiolica. Les nannofo.ssiles calcaires dans la coupe deviennent
parfois le constituant majeur de la roche et la première apparition des nanno-
conides ainsi que leur première acme y ont été reconnues. La limite entre les
zone.s standards de.s calpionelle.s A et B est considétee comme la limite du
Tithonien et Bérriasien dans cette étude. L échantillonnage serré de 15-
20 mètres a fourni une résolution parfaite pour dotumenier la première appa¬
rition de plusieurs espèces de radiolaires. Ces pmmières apparitions ne sont
pas simultanées. Grâce à la résolution fine des dacafions par cchanrillonnagc
serré, rapparirion graduelle de la faune de.s radiolaires crétacés a été nettement
observée dans la coupe KEL ; néanmoins, les radiolaires ne décrivent pas la
limite jurassiquc-crctacc puisqu’un changement synchronisé important
n’existe pas dans la faune de radiolaires.
INTRODUCTION
Radiolarians are diverse and abiindant in Upper
Jurassic-Lower Cretaceous sequences across the
World. They hâve been studied intensively in the
past thirry years from North America (Pessagno
&c Blome 1982, 1990; Pessagno et uL 1984; Yang
& Pessagno 1989; Hull 1995, 1997). Europe
and rhe Middle East (Baumgartner ôc Bernoulli
1976; Baumgartner 1980, 1984, 1987; Steiger
1992; Jud 1994; O'Dogherry 1994;
Baumgartner /?/. 1995a; Kicssling 1995, 1996;
Dumirrica et al. 1997), Japan (Nakaseko &
Nishimura 1981; Aita ^ Okada 1986; Maesuoka
& Yao 1986; Aita 1987; Marsiioka 1995a, b, c;
Yang & Matsuoka 1997) and Southern high lati¬
tudes (Baumgartner 1992, 1993; Kiessling &
Scasso 1996).
The main purpose of chis study is to compare
radiolarîan biostrarigraphy with bîozonations of
calpioncllids, calcareous nannofossils and other
calcareous microfossils (e.g. algae and benthic
foraminifera) across the Jurassic-Cretaceous
boLindary on samplcs from northwest Turkey,
near Ankara. Out objectives are: (!) reporting
rhe radiolarian assemblage Irom this boundary
for ihe firsi cime from Turkey; (2) investigaiing
the chronostratigraphic ranges of our radiolarian
faunas; (3) correlating our radiolarian biostrati-
gxaphy with that of co-occurring calcareous
microfossils.
The study area is located in rhe Southern part of
northwest Turkey near the towns of Kozluca,
Kabalar and Akia»! (Fig. 1) which lie northwest
of’furke/s capital, Ankara. Alcincr et al. (1991)
studied ihc straiigraphy and paleogcographic
évolution of this région whcrc the Llppcr
Jurassic-Lower Cretaceous successions occupy
approximarely 120.000 square kilometers.
Altiner et al (1991) rneasured 44 stratigraphie
sections from these successions in which four
sections were reported ro contain radiolarians,
These four sections arc AÇ (by Akta^), KEL (by
Kozluca), MK (by Kabalar) and ÇD (by The
Ismet Pa§a railway station) (Fig. 1). Among these
four sections, only section KEL produced well
GEODIVERStTAS • 1999 • 21 (4)
717
Mekik F. A., Ling H. Y., Ozkan-Altiner S. & Altiner D.
Fig. 1. — Géographie map of sîudy area {modified after Altiner étal. 1991) illustrating locations of radiolarian bearing stratigraphie
sections (AÇ, ÇD. KEL, MEK).
preserved radiolarians. le is also the thickest of
these four ÿiictions (600 m for the iipper
Tithonian and Berriasian interval) and provides
superior résolution for marking the Jurassic-
Cretaccous boundary duc to ics high to very high
sédimentation rate.
Within a tectono-stratigraphic fraraework, the
Southern part of norihwcstcrn Turkey contains
the deposits of a Mesozoie micro-continent, the
Sakarya C'ontintMit (Fig. 2). The Sakarya
Continent was a Jurassic-Cretaceous carbonate
platform micro-contincnc iimidsi the branche.s of
the Neo-Tcthys (îjengor &: Yilmaz 1981). Dtiring
the Tithonian-Bcrriasian interval, the Sakarya
Continent was distant Irom terresttiaJ scdiment
influx and henue a site ol carbonate déposition.
This micro-coniincnt rifred away from
Gondwanalaiid in the Jurassic and moved north-
ward CO eventually colhdc wiih Eurasia
(Rhodope-Pontide Fragment in Fig. 2) by the
end of the Lare Creraceous (^engôr 6c Yilmaz
1981). Today, the Sakarya Continent is a part of
Turkey and bound to the Rhodope-Pontide
Fragment in the north by the Invra-Poncide
Suture and to tlie Tauride and Kirçehir Blocks in
the South by the l/mir-Aakara Suture (Fig. 2).
These sutures are ophiolilc belts remaining Irom
the closure of the branches of Neo-Tethys.
LITHOLOGY
Section KEL (600 meters in rhickness) contains
the Tithonian-Berriasian pelagic limestone depo-
.sits ol the Sakarya Continent. The rhickness of
the scctioti, its pclagic microfacics and rich
micfolos.sil content of radiolarians, calpionellids,
calcareoiui nannofbssils, benthic loraminifera and
calcarenus algac, make ît Idéal for the examina-
rion of the Jurassic-Cretaccous boundary.
Calcareous nannofossils in tins section occasio-
fuilly attain rock-forming abundance. Located at
Koziuca, northwest ol Beypazari, section KEL
consists ol the Yo.sunlukbayiri Formation in its
lowcr portion (samplcs 24-36) and the
Sügiikçam Limestone in its iipper part
(sample.s 2-23) (Altiner cr^/. 1991) (Fig. 3).
The Yosunlukbayiri Formation is a thick caldrur-
biditic sequence. The upper pan of this forma¬
tion, outeropping in section KEL, Ls composed
ol fine detxitic limextones containing six distinct
olistostrome levels. The uppermost detritic
limestone beds contain Zoophycus as wclt as
abundant calpionellids and calcareous namiofos-
sils (Altiner et///. l99l;Ôzkan 1993a. b).
The Yosunlukbayiri Formation is graciually over-
lain by the porcelaneous rnicrites ol the So^kçam
Limestone in the area. The lower part of the
718
GEODfVERSITAS • 1999 • 21 (4)
Radiolarians from NW Turkey
Fig. 2. — Map of Turkey illustrating lectono-stratigraphic units (modified after §engôr 1984). SC. Sakarya Continent; RPF, Rhodope-
Pontide Fragment: TB, Tauride Block; KB. KIrçehir Block; EAAC. East Anatolian Accretionary Complex; AP. Arabian Plate.
So^kçam LLmesionc (KEL 2-24) is characterized
by thin, medium or chickly bedded, somcrimes
silicified, whire ro cream micritic limesrones bea-
ring chert nodules and intercalaced with fine tur-
bidite layers (Altiner et (iL 1991). The So^ikçam
Limesrone lithologically resembles the Bianconc
and Maiolica formations in the Umbria-Marchc
Région in Italy (Farinacct et al. 19813, b; Altiner
et al. 1991). The Bianconc and Maiolica forma¬
tions hâve been extensively stndied for calpioncl-
lids, calcareous nannofossils and magneto-
stratigraphy (e.g. Lowrie & Channcll 1983; trba
& Quadria 1987; Channcll et ai 1987, 1993) as
vvell as for radiolarian.s (e.g. Baumgartncr 1984;
Jud 1994; Ü’Dogherty 1994). The strong litholo¬
gie similarity between the Sogukçam Limcstonc
and the Maiolica and Bianconc formations is due
to rheir déposition in the .same océan, during the
samc tinte interval, and under similar conditions
as submerged carbonate platforms disrant front
terrestrial sédiment influx (sec Altiner et ai 1991).
For this reason the radiolarian biostratigraphy we
présent hefc and its corrélation to calpionellid and
calcareous nannofossil biozonations previously
establishcd for the same .section (K£l.) Ls signifi-
canr as a corrélative example from Turkey to the
previous studies in Italy.
THE JURASSIC-CRETACEOUS
BOUNDARY
The Jurassic-Cretaceous boundary is one of the
most problematic System boundarics because the
‘l'ithonian doe.s noi hâve a stratotype, the lowcr
parts ol the Berriasian tend to lack lossils Jn
many parts of Western Europe, and ihe bounda¬
ry does not correspond to any major faunal or
floral turnover (Hoedcmackcr 1987; Oloriz &
Tavera 1989; Romane 1991; Pessagno et al,
1997). Ammonites (Kemper et al. 1981;
Hoedemaeker 1991), Buchia (Zakhanov 1987;
Pessagno et a.L. 1987a, b; Hoedcmackcr 1991;
Pessagno et at. 1993), calpioncllid.s (Le Hcgarat
ôc Remanc 1968; Allemann et ni 19'7|; Rcmane
1964, 1983, 1986; Remane et al. 1986; Cecca et
al. 1989) and calcareous nannofossil.s (Thiersteiti
1975; Coopet 1985; Bralower 1990; Bown &
Ùzkan 1992; Ozloui 1993a. b) hâve been utiü-
zed in biostratigraphically maridng rhis bounda¬
ry. Ammonites, which are tradicionally
considered che basis ol .standard and high resolu¬
tion biostratigraphy, bccome strongly provinciali-
zed during the Tithonian-Berriasian interval,
This provincialism créâtes problems in corréla¬
tion between the Tethyan and Boréal realms
GEOOIVERSITAS • 1999 • 21 (4)
719
Mekik F. A., Ling H. Y., Ôzkan-Altiner S. & Akiner D.
KEL Section
ZONATION
Û
O
oc
LU
CL
LU
O
<
K
CO
c
O
"ce
E
O
LL
_a3
CL
E
CO
CO
Lithology
&
Fossils
c
CO CO
•O ^
s N
0)0 T-
geesg
CO c
O S
<
O)
b O)
ü<‘*"
CO .
3 '
O
I Ü)
^ O CO ^
^ O -SS
O c.^ s
O g
CO
3
O
UJ
O
<
CC
O
CO
<
oc
oc
UJ
CÛ
(D
c
O
<D
E
E
CO
O
3
>05
O
CO
4
5
7
9
11
14
16
17
18
20 -t
U 0
U
U
U
@ ^
U
O
CO
CO
<
oc
~D
Z
<
O
X
23
25 4
S
CO
JD
_3
C
3
C/3
U'
A3
A2
^ U
U
uSXSTjf^
V U
120
■90
•60
■30
0 m
CD
C
O
CD
O
42
"S
O)
c
CD
"S
g
.CO
: CO
't
'S
c
0)
a
O
•i CD
CO c
CO (0
CD 5S:
O
O O
CD
E
O
O
J O
: O
O
CD
CO
.CO
C:
O
c
O
E
' CO
-c
.CÜ.
£
CO c
3 C
C CD
O C
^ P
O-E
g-S
à CO
:3
CD '
CO
.CD
CO ,
e:c:
.otj
Slope breccia or olistostrome I ItI I Siliceous limestone
l: ‘ :i;i: l Fine detritic limestone (calciturbidite) h~ i ~ ' i Porcelaneous limestone
0 Trocholina U Calpionellidae ^ Sponge spiculé ^ Belemnite V” Saccocoma
U Chitinoidella ^ Radiolaria ® Ammonite Aplycus Zoophycus
Fig. 3. — Calpionellid, calcareous nannofossil, and benthic foraminifera and algae biozonations on stratigraphie section KEL. Rich
radiolarian assemblages were recovered from the numbered samples in the figure.
720
GEODIVERSITAS • 1999 • 21 (4)
Radiolarians from NW Turkey
(Jelecsky 1984; Zeiss 1984, 1986; Remane 1991;
Pessagno et al. 1997). According to Pessagno et
al. (1997) calpionelÜds arc diachronous with
longer ranging zones in North America rhan in
Europe. However. .since Turkey is located in
Eurasia, and since calpionellid biozones are well
established in Europe (Allenunn et al. 1971;
Trejo 1980; Remane êt al. 1986; Altincr ôe
Ôzl^n 1991; Pop 1994a,b: 1996; Grün & Blau
1997), calpionellid zones arc used to mark the
boundary in ihis study.
Le Hegarat & Remane (1968) placed the
Jurassic-Cretaceous boundary wirhin Calpionel¬
lid standard zone R in the stratotype ot the
Berriasian. For ihis reason, Altincr & Ozkan
(1991) also placed the boundary in zone B in
section KEL HoweVer, since the boundary bet-
ween Calpionellid standard zones A and B also
corresponds to the boundary between the
Duraa^ites and Euxinus ammonite zones, the
Jurassic-Cretaccous boundary svas accepted as
the limit between Calpionellid standard zones A
and B at the Colloque (Anonymous 1975), and
by Cecca et al, (1989). Other rc.searchers
(Jeletsky 1984; Channell ôz Grandesso 1987;
Ôzkan 1993b; Grün & Blau 1997) consider chc
limit between Calpionellid standard zones A and
B as the Jurassic-Cretaccous boundary as well.
On the other hand, Tavera et ai (1994) stated
thar the boundary berween Durangites dtwà Jacobi
ammonite zones dnes not correspond to the limit
between Calpionellid standard zones A and B in
the Vocontian Région (sec also Oloriz & Tavera
1989) but rather to a levcl within Calpionellid
standard zone A We also consider the Jurassic-
Crctaceou.s boundary to correspond to the limit
between Calpionellid standard zones A and B in
section KT.l. based on the consensus reached at
the Colloque (1975) and many subséquent
publications accepting ihis limit as the Jurassic-
Cretaceous boundary. Therefore, the limit ber¬
ween Calpionellid standard zones A and B in
section KEL falls between samples 20 and 21
(Fig. 3).
The development oF a magnetic polarity urne
scale for the Jurassic-Cretaceous boundary (Ogg
& Lowrie 1986; Ogg et al. 1991) and the corré¬
lation of chis time scale with biozonations of cal-
careous nannofossils (Bralower et al. 1989),
calpionellids (Channel Grandesso 1987) and
radiolarians (Jud 1994) are important advances
in the multidisciplinary délinéation oF rhis boun¬
dary. According co Ogg (1992) the boundary is
defined as the base of the reverse polarity chron
M I8R and Bralower et al. (1989) correJate the
base of M 18R with the boundary between
Calpionellid standard zones A and B.
The following is a brief discussion on compari-
son of radiolarian biozonations across the
Jurassic-Cretaceous boundary from North
America (Pessagno 1977a; Pessagno étal. 1987a;
Pessagno & Blomc 1990; Pessagno et al 1993;
Huil 1997), Europe (Baumgartncr 1980, 1984,
1987; Steiger 1992; Jud 1994; Baumgartner et
al. 1995b: Dumitrica et al. 1997) and Japaa
(Maesuoka & Yao 1986; Aica 1987; Matsuoka
1995a. b, d; Yang & Matsuoka 1997) which
illustrâtes problems of provincialism and dia*
chroneity among radiolarians;
North America, Originally the top of zone 4 was
defined as the Jurassic-Cretaceous boundary
(Pessagno 1977a; Pessagno et ai 1984, 1987b,
1993; Pessagno ôc Mizutani 1992). Rccently the
uppermo.st part of .subzone 4a hus been revised
and is considered to bclong to the Lower
Cretaccous (Berriasian). This boundary within
subzone 4a coïncides with the tops of the
Durangites (ammonite) and the Buchia fitochü
zones (bivalve) (Pes.sagno et ai 1997). Ir should
be nored here that originally Pessagno (1977a)
and subseqtiently Pessagno et al. (1984, 1987b,
1993) considered the la.st occurrence.s of RistoLi
altisshna and Ristola prneera (priniary marker
taxa) for defining rhe top of zone 4 (and
subzone 4a). Parvicingula colemani bccomcs
exrincr slighrly bclow thîs level. The datum
where Parvicingula colemani becomes extinct falls
within the Pseudodictyomirra carpatica zone of
Japan (Yang & Matsuoka 1997).
Europe. Baumgartncr et al. (1995b) utiJize uni-
tary associations among radiolarian taxa to
construct radiolarian biozones (UAZ 95). Each
biozone is defined by a group of radiolarian taxa
that only co-occur in that zone. When UAZ 95
is compared with North American zones
(Pessagno et al. 1993), diaclironism between the
zones is évident. Discrepancies between fîrst
appearance data of some taxa berween Europe
GEODIVERSITAS • 1999 • 21 (4)
721
Mekik F. A., Ling H. Y., Ôzkan-Altiner S. & Altiner D.
Fig. 4. — Chronoslratigraphic dlslnbution of radiolarian fauna in section KEL. Symbols on stratigraphie section are the same as in
Fig. 3.
and North America as wcll as radiolarian provin-
cialism during the Late Jurassic-Early Cretaceous
interval hamper the corrélation of radiolarian
biozones beeween North America and Europe;
howeven in somc récent studies rhis corrélation is
becoming incrcasingly doser (Hull 1997).
Japan. The evolutionary Hrst ap[)earance of
Psetidodïcvyomitra carpatica from Loopus prirniü-
vus (= Pmidodictyomitra primnivui) defines the
boundary between the Loopus primliitnis and
Pseudodictyomiîi'a carpatica zones. This boundar}'
is in the latest Tithonian and ir is approximately
one million year older than the Jurassic-
Cretaceous boundary in both Japanese Island
sections and in the western Pacific deep océan
basin (Matsuoka 1995a, b; Yang & Matsuoka
1997).
RESULTS AND DISCUSSION
Section KEL was previoiisly studied for its cal-
pionellids (Altiner Ôz Ôzkan 1991), calcareous
nannofossils (Ôzkan 1993a, b) and bcnthic fora-
nünilera and calcareous algae (Altiner 1991). In
the présent study, we compare these previously
cstabÜshed zonation.s for die same section with
our radiolarian biosrratigraphy. Section KEL was
reported to contain abondant radiolarians in 28
of 40 samples from rhin section examinations
722
GEODIVERSITAS • 1999 • 21 (4)
Radiolarians from NW Turkey
(Ozkan 1993a). Howevcr, well-preserved and
rich radiolanan faunas could only be obtained
from thc uppcr part of the section that corres¬
ponds to thc So^ukçam Limestonc in section
KEL. In thc lower part of the section radiolarian
préservation is poor and hence recovery is very
low. Radiolarians are recovered from sampics in
section KEL assit^ned to Calpionellid standard
zones A2 (KEL 25-26), A3 (KEL 20-24), B
(KEL 19-5) and C (above KEL 4) (Altiner
Ozkan 1991) (Fig. 3). Altiner Ozkaii (1991)
aiso report ihe présence ol Duvalia tithonica
(belemnite) in subzone A2 whosc range is known
to be from late Tithonjan to carly Berriasian
(Ehxihhs zone). We wilt flrsr discuss calcareous
microfossil blostratigraphy for section KEL.
Biostratigraphv of co-occurring
CALCAR£OU.S MICROFOSSILS
The Jurassic-Cretaccous boundary is considered
as the boundary between Calpionellid standard
zones A and B which corresponds to the location
between samples 20 and 21 in section KEL
(Fig. 3). This boundary falls within the upper
pan of the Aikrostaurtis chinuius calcareous nan-
nofossil zone in section KEL and it Ls impossible
to delineate with Altiner s (1991) foraminiferal
and algal zonation where his Protopeneroplis iro-
changiilata zone (zone III) transgresses the boun¬
dary (Fig. 3).
1L\DI0LAK1AN BlOSTRATlGRAmV
Due to thc poor préservation of radiolarians in
the fine detritic Umestones ol die Yosunlukbayiri
Formation, the initial occurrencevS of the majori-
ly of Cretaceous radiolarians in section KEL
begin near thc base of thc So^ikçam Llmestone.
In section KEL, the first appearance of nannoco-
nids as a group is observed in sample KEL 21
(Fig. 4) from which well-preserved radiolarians
could not be extracred. The Jurassic-Cretaceous
boundary corresponds lo the firsr occurrences of
Dicerosatunialis dicranacamhou Dcinatus diarn-
phidius^ Pyramispongia harmsteinemiu Acaeniotyk
diaphorogontiy Archneodictyomitra apiariumy
Thanarla sp., Htilesium (^) sp., Emihiina pessa-
gnoi and Alievitim nndidosuvi in this section.
Also, thc first occurrences ol Sàitoum sp.,
Angulobracchia portnianni s.L, Acanthocircus mul-
tidentatiiSy Becus triiingulocentrum, Triactomn
tithonianum and Tethysetta colvmna correspond
to rhe First peak in nannoconid abundancc as
defined by Ozkan (1993a, b) (Fig. 4) in section
KEL. As a general pattern, thc initial occurrences
of Cretaceous radiolarians throxighour the sec¬
tion arc not abrupt, but stepwisc, emphasizing
that a major radiolarian faunal turnover does not
exLst across thc Jurassic-Cretaceous boundary in
northwest Turkey..
The chronostratigraphic distribution of radiola¬
rian taxa within section KEL (Fig. 3) does not
compiy with any of the established radiolarian
zonations in North America or Japan. This is
due to rhe lack of biostradgraphically index spe-
cies sucK as Psrudodictyômirra aupatica^ RistoU
procera or Pankcinpila calernani in our samples.
The taxa we describe herein (e.g. Mieinum regu-
lare^ Dicerosatutnalh dicranacanthoSy Mirifusus
diauat’y Tethysetta boesUy Deviatîn diamphidiuSy
Pantanellmm berriasianuni, Hsunm rarkosmum)
enables us to correlate section KEL with Jud's
(1994) biozone D2 and UAZ 95 zones 13 and
14 (Baumgartner er/z/. 1995a).
SYSTEMATIC MICROPALEONTOLOGY
The supra-generic classification for radiolarians is
based on, for the most part, Dumitrica’s (1995)
classification. The synonymy lists contain only a
few représentative studies.
Subclass RADIOLARIA Muller, 1858
Order POLYCYSTINA Ehrenberg, 1838
enietid, Riedel, 1967
Suborder NASSELLARIA Ehrenberg, 1875
Family ARCitAFOÜICrYOMITRIDAB
Pessagno. 1976
Genus Archaeodictyomitm Pessagno, 1976
Archaeodictyomitra apiarium (Rüst, 1885)
(Fig. 5B)
Lithocampe aptarium Rüst, 1885 {fide ]\xày 1994):
314, pi. 39(l4),fig. 8.
GEODIVERSITAS • 1999 • 21(4)
723
Mekik F. A., Ling H. Y., Ôzkan-Altiner S. & Altiner D.
Fig. 5. — A. Hsuum raricostatum Jud (KEL 18): B. Archaeodictyornitra apiarium Koctier (KEL 7); C, Archaeodictyomitra sp. cf.
A. minoensis (Mizutani) (KEL 7); D. Thanaiiasp. (KEL 16); E, Stichocapsa sp. aff. S. altiforamina Tumanàa (KEL 4); F, SviniUium
depressum (Baumgartner) (KEL 20); G. Tethysetta sp- cf T boesii (Parona) (KEL 18); H. Teihysetta columna (Rüst) (KEL 16);
I. Mirifusus dianae (Karrer) (KEL 17): J. Ristola alUsstma altissima (Rüst) (KEL 18), K, Tethysetta ovoldala Dumitrica (KEL 11);
L, Loopusyangi Dumitrica (KEL 25). Scale bar: A, 55 pm; B, E, K, 45 pm; C, H, 65 pm; D. G, 40 pm; F, 50 pm; I, 120 pm; J, 75 pm;
L, 70 pm.
724
GEODIVERSITAS • 1999 • 21 (4)
Radiolarians from NW Turkey
Archaeodictyomitra apiara- Pessagno 1977a; 41, pl. 6,
figs 6, 14. — Bnumgartnet 1984: 758, pl. 2 figs 5-6.
Archdeodict\mnitrn üpiarium—K.oc\\cr 1981 {fide]uà^
1994): 56; pl. 12, fig. 13. - Jud 1994: 62, pl. 3,
figs 10, 11. - Baumgarincr et al. 19ÿ5a: 98, pl. 3263,
figs l-7(H). — Dumicrica et uL, 1997: 38. pl. 7, fig. 7.
Occurrence. — Samples KEL 5-20; from Jurassic-
Cretaceous boundary to boundary between
Calpionellid standard zones B and C.
Archaeodictyomitra sp.
cf. A. tnitioeasis {MïzuVdni, 1981)
(Fig. 5C)
Occurrence. — Sainples KEL 5-7; from upper por¬
tion of Calpionellid standard zone B to boundary bet¬
ween zones B and C.
Genus Thanarla Pessagno, 1977b
Thanarla sp.
(Fig. 5D)
Occurrence. — Samples lŒL 7-20; from Jurassic-
Cretaceous boundary to upper part of Calpionellid
standard zone B.
Family HSUUIDAE Pessagno & Whalcn, 1982
Genus Hstium Pessagno, 1977a
emend. Talcemura, 1986
Hsuum raricostatum\\\à^ 1994
(Fig. 5A)
Hsmim raricostatum Jud, 1994: 81, pl. 12, figs 3-5. -
Baumgartner et al. 1995a: 286, pl. 3591, figs 1-3. -
Dumitrica et ai 1997: 46, pl. 10, fig. 1.
Occurrence. — Sample KEL 18; in Calpionellid
standard zone B.
Family ParviCINGUI.IDAE Pessagno, 1977a
Genus M/r/yî/^wj Pessagno, 1977a
Mirifiisus dianae (Karrer, 1867)
(Fig. 51)
Lagena dianae Karrer, 1867 (fide ]\xà, 1994): 365,
pl. 5, figs 8a. b.
Mirifiisus duinae - Dumirrica & De Wever 1991:
553-557, Egs 1, 2a, b. - Dumitrica et al. 1997: 52,
pl. 11, fig. 8.
Mirifiisus dianae minor — Baumgartner 1984: 772,
pl. 5, figs 11, 14. — Jud 1994: 84, pl. 13, fig. 2. —
Baumgartner ///. 1995a: 314, pl. 3286, figs 1-5.
Occurrence. — Sample KEL 17: in Calpionellid
standard zone B.
Genus Ristola Pessagno & Whalen, 1982
emend. Baumgartner, 1984
Ristola altissima altissima
(Rûst, 1885)
(Fig- 5J)
Lithocampe altissima Rüsr, 1885 (ftde Pessagno,
1977a): 315 (45), pl. 40» fig. 2.
Parvicingula altissima - emend, Pessagno 1977a: 85>
pl. 8, figs 9-10.
Ristola altissima (Rüst) - Baumgarincr 1984: 783,
pl. 8, fig. 3, non figs 4, 9. - Dumitrica et al. I997i 52,
pl. 11.% 5,?7.
Ristola ahisstma altissima — ]\a6. 1994: 101, pl. 19,
fig. l. - Baumgarrncr et al. 1995a: 472, pl. 3241,
figs 1-5(H).
Occurrence. — Sample KEL 18; in Calpionellid
standard zone B.
Genus Svinitzîum Dumitrica, 1997
Svinitzium depressum
(Baumgartner. 1984)
(Fig. 5F)
Pseudodictyornttra depressum Baumgartner, 1984: 782,
pl. 8, figs 2» 7, 8, ]].
Wran%ellium depresmm - Baumgartner et al. 1995a:
632, pl 3284, figs 1 -5.
Svinitzium depressum — Dumitrica et al. 1 997: 53,
pl. 11, figs 11, 17.
Occurrence. — Samplc.s KEL 7-23; from
Calpionellid standard zone À subzone 3 to zone B.
Genus Dumitrica, 1997
Tethysetta sp. cf. T. boesii
(Parona, 1890)
(Fig. 5G)
Occurrence. — Sample KEL 18; in Calpionellid
standard zone B.
GEODIVERSITAS • 1999 • 21 (4)
725
Mekik F. A., Ling H. Y., Ozkan-Altiner S. & Altiner D.
Remarks
The broken nature of che specimen makes a positive
assignment of the présent spccies to 7*. hoesii diffîculr.
Family SethocapsiuAE Haeckel 1881
Genus Gongy/othorax Foreimn, 1968
emend. Dumurica, 1970
Tethysetta columna (Rüst, 1898)
(Fig. 5H)
Gongylothorax sp.
(Fig.6E) '
Lithocampe columna Rüst, 1898: 63. pl- 18, fig. 5.
ParvicinguLi columna -Jud 1994: 116, pi. 23, fig. 17.
Tethysetta columna - Dumitrica et ai. 1997: 49, pl. 11,
figs 13-15.
Occurrence. — Sample KEL 16, in Calpionellid
standard zone B.
Remarks
This species ditfers from Wrangellium columna'
rium Jud, 1994 by having threc rows of pores per
chamber.
Tethysetta ovoidala Dumitrica, 1997
(Fig. 5K)
Tethysetta ovoidala - Dumitrica étal. 1997: 50, pl. 50,
figs 21,22.
Occurrence. — Sample KEL 11; in Calpionellid
standard zone B.
Family PSEUDODICTYOMITRIDAE
Pessagno, 1977b
Genus Loopus Yang, 1993
Occurrence. — Sample KEL 25; in Calpionellid
standard zone A subzone 2.
Genus Sethocapsa Haeckel, 1881
Sethocapsa funatoensts hlxiAy 1987
(Fig. 6A)
Sethocapsa funatoensis fS\{Ay 1987; 73^ p]. 2, figs 6a-7b;
pl. 9, figs 14-15- - Baumgartncr et al. 1995: 494,
pl. 3070. figs I-5(H).
Zhnmoideluim funatoensis — Hull 1997: 132, pl. 38,
figs 13, 15.
(Occurrence. — Sample KEL 7; in the upper part of
Calpionellid standard zone R
Sethocapsa leiostraca Foreman, 1973
(Fig. 6D)
Sethocapsa leiostraca Foreman, 1973; 268, pl. 12,
figs 5-6. — Jud 1994: 105, pl. 20, fig. 5. -
Baurngartner étal. 1995a; 498, pl. 3062, figs 1-5(H).
Occurrence. — Sample KEL 14; in Calpionellid
standard zone B
Loopus yangi Dxxmm'icdiy 1997
(Fig. 5L)
Loopusyangi — Dumitrica et al. 1997: 31, pl. 5, figs 8,
9.
Occurrence, — Sample KEL 25, Calpionellid stan¬
dard zone A suhzone 2.
Family Théo PERI UAE Haeckel, 1881
emend. Riedel, 1967 emend. Takemura, 1986
Genus Stichocapsa 1 laeckel, 1881
Stichocapsa sp. cf. S. altiforamina
Tumanda, 1989
(Fig. 5E)
Occurrence. — Sample KEL 4; just below the
boundary between calpionellid zones B and C.
Family Sponcocapsulidae
Pessagno, 1977a
Genus ObesacdpsuU Pessagno, 1977a
Obesacapsula cetia (Foreman, 1973)
(Fig. 6B)
Sethocapsa cetia Foreman, 1973: 267, pl. 12, fig. 1;
pl. 16, fig. 19.
ObesacapsuU cetia — Baumgartncr 1992 : 325, pl. 12,
fig. 1. - Jud 1994: 87, pl. 13, fig. 11. - Baumgartncr
et ai 1995a: 342, pl. 3203, figs 1-4(FI).
Occurrence. — Samples KEL 7-23; from
Calpionellid standard zone A subzone 3 co upper part
of zone B.
Family WïllIRIEDELLIDAE Dumitrica, 1970
Genus Cryptamphorella Dumïmcz, 1970
726
GEODIVERSITAS • 1999 • 21 (4)
Radiolarians from NW Turkey
Fig. 6. — A. Sefhocapsa funatoensis Aita (KEL 7); B, Obesacapsula cetia (Foreman) (KEL 23). C. Tricolocapsa sp. (KEL 25);
D. Sefhocapsa Jeiostraca Foreman (KEL 14); E. Gongylothorax sp. (KEL 25): F. Cryptamphorella sp. (KEL 25): G. Tricolocapsa
campana Kiessling (KEL 18); H. Zhamoidellum sp. cf. Z ventricosum Dumitrica (KEL 18): I. Deviatus diamphtdius (Foreman)
(KEL 20); J, Deviatus diamphidius (Foreman) (KEL 16); K. Praeconosphaera sphaeroconus (Rüst) (KEL 18); L, Àcaeriiotyle diapho-
rogona Foreman (KEL 16); M, Acaeniotyle diaphorogona Foreman (KEL 16); N, Triactoma tithonianum Rüst (KEL 16). Scale bar: A,
D. 65 pm; B, L, 100 pm; C, E, F, G. 35 pm; H, 40 pm; I, K, 60 pm; J, 75 pm; M, 80 pm; N, 105 pm.
GEODIVERSITAS • 1999 • 21 (4)
727
Mekik F. A., Ling H. Y., Ozkan-AItiner S. & Altiner D.
Cryptamphorella sp.
(Fig- 6F)
Occurrence. — Sample KEL 25; in Calpionellid
standard zone A subzone 2.
Genus Tricolocapsa¥{^ccVc\, 1881
Tricolocapsa campana Kiessling, 1995
(Fig. 6G)
Tricolocapsa campana Kiessling, 1995; 338, figs 7/1-4
Occurrence. — Sample KEL 18; in Calpionellid
standard zone B.
Tricolocapsa sp.
(Fig. 6C)
Occurrence, — Sample KEL 25; Calpionellid stan¬
dard zone A subzone 2.
Tktmxs Zhamoidelhim Dumiirica, 1970
Zhamoidellum sp. cf. Z, ventricosum
Dumitrica, 1970
(Fig. 6H)
Occurrence:. — Samples KEL 14-18; in
Calpionellid .standard zone B.
Family POUEPIDAE-De Wever, 1981
Genus Saitoum Pessagno, 1977b
Saitoum sp.
(Fig. 7K)
Occurrence. — Sample KEL 16-2; from middle of
Calpionellid standard zone B to zone C.
Family Amphip\'NDACIDAH Riedel, 1967
Subamily SyrjngocaPSINAE
Forcman, 1973
Genus Podobursa Wisniowski, 1888
Podobursa sp.
cf. R multispina Jud, 1994
(Fig. 7L)
Occurrence. — Samples KEL 2-18; from
Calpionellid standard zone B to zone C.
Rlmarks
Poor préservation prevents the positive identifi¬
cation of this form as Podobursa multispina.
Podobursa polyacantha (FischÜ, 1916)
(Fig. 7H)
Theosyringtum acanthophorum Rüsr var. polyacanthus
Fischli, 1916 {jfde Baiimgartner et al., 1995a): 47,
fig. 41.
Pniinhuna iJolyaùintlM — Baumgartner et al. 1995a;
424, pl. 3174, figsl-4(H).
Occurrence. — Sample KEL 7; in upper part of
Calpionellid standard zone B.
Suborder SPUMELLARIA Ehrenberg, 1875
Superfamily ActinomMACEA Hacckel, 1862
Family Leugdnidac Yang &: Wang, 1990
entend. Dumitrica. 1995
Genus Acaeniotyle Foretnan, 1973
Acaenîotyle diaphorogona
Foreman, 1973
(Fig. 6L, M)
Acaeniotyle diaphorogona Foreman, 19’^3: 258, pl. 2,
figs 2-5- — Thurow 1988: 396, pi. 9, fig. 8. -
Baumgartner et ai 1995a: 50. pl. 3090. figs 1-6.
Occurrence. — Samples KEL 5-20; from the
Juras.sic-Crctaccous boundary to upper part of
Calpionellid standard zone B.
Genus Praeconosphaera Yang, 1993
Praeconosphaera sphaeroconus
(Rüsu, 1898)
(Fig. 6K)
Conosphaera sphaeroconus Rü.st, 1898: 13, pl. 4, fig. 8.
Praeconosphaera sphaerocoHits - Yang 1993: 105,
pl. 17, figs 2, 6, 12, 16, 23. — Dumitrica et ai 1997:
21, pl. 3. fig. 3.
Occurrence. — Samples KEL 7-23; from
Calpionellid standard zone A subzone 3 to upper part
of zone B.
Family Paneanelliidae Pessagno, 1977a
emend. Pessagno & Blome, 1980
728
GEODIVERSITAS • 1999 • 21 (4)
Radiolarians from NW Turkey
Fig. 7. — A, Dicerosaturnalis dicranacanthos (Squinabol) (KEL 16); B, Dicerosaturnalis dicranacanthos (Squinabol) (KEL 7):
C, Acanthocircus sp. aff. A. minimus (Squinabol) (KEL 2); D. Acanthocircus muttldentatus (Squinabol) (KEL 7); E. Pantanellium ber-
riasianum Baumgartner (KEL 16); F. Pantanellium sp. (KEL 18); G. Archaeospongoprunum patricki Jud (KEL 20); H. Podobursa
polyacantha (FIschli) (KEL 7); 1, Emiluvia omanensis Kiesslïng (KEL 16); J, Emiluvia pessagnoi Foreman (KEL 20); K, Saitoum sp.
(KEL 5): L. Podobursa sp. cl. P. multispina Jud (KEL 18). Scale bar: A. 70 pm; B, 160 pm; C, 105 pm; D, 95 pm; E, 50 pm; F. H.
60 pm; G, 90 pm; I, L, 80 pm; J. 155 pm; K, 35 pm.
GEOOIVERSITAS • 1999 • 21 (4)
729
Mekik F. A., Ling H. Y., Ôzkan-Altiner S. & Alciner D.
Subtamily PANTy\NFLUlNAE
Pessagno, 1977a
emend. Pessagno ik. Blome, 1980
CtenUN Pantanellium Pessagno, 1977a
emend. Pe^sagno & Blome, 1980
Pantanellium berriasianum
Baumgartner, 1984
(Hg. 7E)
Pantanellium (?) berriasianum Baumgartner, 1984:
776-777, pl. 6, figs 14-15.
Pantanellium berriasianum — Jud 1994: 89, pl. 15,
figs 5-6. - Baumgartner et al. 1995a: 368, pl. 3280,
figs l(H)-2.
Occurrence. — Simples KEL 7-12; txom lower to
upper pan of Calpionellkl standard zone B.
Pantanellium sp.
(Fig. 7F)
Occurrence. — Samples KEL 2-25; from
Calpionellid standard zone À subzone 2 to zone C.
Rkmark-S
Poor preservarion hinders further identification
of this spécimen.
Family XlPHOS TYLlOAE Haeckcl, 1881
emend. Pessagno & Yang,
in Pessagno et al.., 1989
Genus TriactomaK\i?>i, 1885
Triactoma tithonianum Rüst, 1885
(Fig. 6N)
Triactoma tithonianum Rüst, 1885 {fide Baumgartner
étal., 1995a); 289, pl. 28, fig. 5. - Jud 1994: 115,
pl. 23, figs 10-11. — Baumgartner et al. 1995a: 52,
pl3097, figs 1-3 (H)
Occurrence. — Sample KEL 16; in Calpionellid
standard zone B.
Superfamily Pyi.ONIACEA l laeckel, 1881
emend. Dumitrica, 1989
Family OrbicULIFORMIDAE Pe.ssagno, 1973
emend. Dumitrica, 1995
Subfamily Emiluvunah Dumitrica, 1995
Genus Emiluvia Foreman, 1973
Emiluvia omanensis Kiessling, 1995
(Fig. 71)
Emiluvia omanensis Kiessling. 1995: 330, figs 6/5-8. -
Dumitrica et al. 1997: 27, pT. 4, figs 2, 4.
Occurrence. — Samples KEL 7-16; in Calpionellid
standard zone B.
Emiluvia pessagnoi Foreman, 1973
(Hg- 7J)
Emiluvia pessagnoi Foreman, 1973: 262, pl. 8, fi^. 6.
Emiluvia pessagnoi s.l. - Jud 1994; 77, pl. 10, figs 1,
2. - Baumgartner et al. 1995a: 206, pl. 3066, figs 1,
2 .
Occurrence. — Samples KEL 20-21; on Jurassic-
Cretaceous boundary.
Family'F ritrabid.ae Baumgartner, 1980
Genus Deviatus Li, 1986
Deviatus diamphidius (Foreman, 1973)
(Fig- 61, J)
Paronaella (?) diamphidia Foreman, 1973: 262, pl. 8,
figs 3,4.
Foremanella diamphidia ■ Baumgartner 1984: 765,
pl. 6, fig. 18.
Deviatus diamphidius — O'Yio^hexiy 1994: 345,
pl. 64, fig. 14. — Dumitrica et al. 1997: 28, pl. 4,
fig. 3.
Deviatus diamphidius diamphidius — Baumgartner et
al 1995a: 172, pl. 3112 Jigs
Occurrence. — Samples KEL 2-20: from lower part
of Calpionellid standard zone B to zone C.
Genus Baumgajtner, 1980
Tritrabs ewin^ ÿt. (Pessagno, 1971)
(Fig. 8B)
Paronaella (?) ewingi Pessagno, 1971: 47, pl. 19,
figs 2-S.
Tritrabs ewing s.l. — Baumgartner et al. 1995a: 606,
pl. 3l Id^ figs 1-8(H).
Trip a bs ewingi 1994: 116, pl. 23,figsl2-13.
Tritrabs ewsngi — Dumitrica et al. 1997: 27, pl. 4,
fig. 1. -Hu!l 1997: 4, pl. 19, fig. 9, 12.
Occurrence. — Sample.s 2-7; from upper part of
Calpionellid standard zone B to zone C.
730
GEODIVERSITAS • 1999 * 21 (4)
Radiolarians from NW Turkey
Fig. 8. — A, Halesium sexangufum Pessagno sensu Steiger (KEL 7); B, Ttitrabs ewingi gr. (Pessagno) (KEL 18); C, Halesium irre-
gularis Steiger {KEL 16); D, Angulobracchia (?) porvnanni s.l Baumgartner (KEL 16); E. Halesium (?) sp. (KEL 20); F, Paronaella (?)
sp. cf. P. tubufata Steiger (KEL 7); G. Paronaella (?) sp. et. P tubulata Steiger (KEL 7); H. Pyramispongia barmsteinensis (Steiger)
(KEL 20); I, Paronaella (?) tubulata Steiger (KEL 7); J, Becus triangulocentrum Dumitrica (KEL 16); K, Alievium nodulosum
Dumitrica (KEL 20); L, Alievium regulare (Wu & Li) (KEL 18). Scale bar: A, 120 pm; B, 155 pm; C, 85 pm; D, 145 pm; E, 110 pm; F,
90 pm; G, J, 75 pm; H. I, K, L. 65 pm; K. 105 pm.
GEOOIVERSITAS • 1999 • 2l (4)
731
Mekik F. A., Ling H. Y., Ozkan-Altiner S. &c Altiner D.
Superfamily SatURNAI.IACEA
Dcflandre, 1953
Family SaturNAI.IüAK Dcflandre, 1953
SubFamily Saturnalinae Dcflandre, 1953
Genwh Acanthocifeus Squinabol, 1903
Acanthocircus multidentatus
(Squinabol, 1914)
(Fig. 7D)
Satumalis muitifivntatm Squinabol, 1914: 298, pl. 23
[4], figs lu 12,
Acanthocircus rnultidencatus ~ Pessagno 1977b: 32,
pl. 2, figs 15, 20. - O’Dogherty 1994: 255, pl. 44,
figs7'10.
Occurrence. — Samplcs KEL 7-16: from lower to
upper part of Calpioncliid standard zone B.
Acanthocircus sp.
afî. yl. minimus (Squinabol, 1914)
(Fig. 7C)
Occurrence. — Samples KEL 2-23; from
Calpionellid standard zone À subzone 3 to zone C.
Remarks
Our spccimcn ditfers from A. ellipticus
(Squinabol, 1903) and A hispinns (Yao, 1972)
by its smullcr size and narrower ring, h more cio-
sely resemblcs rninhnus (Squinabol, 1914)
although it bas à moie rectangular outline and
flatter ring,
Genus Dicerosaturnalis
Dumitrica & Jud, 1997
Dicerosaturnalis dicranacanthos
(Squinabol, 1914)
(Fig. 7A, B)
SaturnalîS dicranacanthos Squinabol, 1914: 289,
pl. 22, fig,s4-7;pl. 23,fîg. 8.
Acanthocircus dicranacanthos — Ï^OTcmzti 1975: 610,
pl. 2D, figs 5-6. - Hull 1997: 29, pl. 9, fig. 3, 4.
Acanthocircus rrizonalis dicranacanthos - Baumgartner
étal. 1995a: 72, p!. 3087, fig.s 1-8(H).
Dicerosaturnalis dicranacanthos — Dumitrica et al.
1997: 18, pl. Uflg. 15.
Occurrence. — Sample KEL 2-21; from Jurassic-
Crctaceous boundary to Calpionellid standard
zone C.
Superlamily SponGODISCACEA
Haeckel, 1862
Family CAVA.SPONGIDAE Pessagno, 1973
Qcnxxs Pyretmispongia Pessagno, 1973
Pyramispongùt barrnsteinensis
(Steiger, 1992)
(Fig. 8H)
Nodotetraedra bartnsteiuensis Steiger, 1992: 33, pl. 4,
figs 9-14.
Pyramispongia barrnsteinensis — Baumgartner et al.
1995a: 464, pl. 6109, figs 1-4. - Dumitrica et al.
1997: 26, pl. 4, fig. 12.
Occurrence. — Samples KEL 2-20; from Jurassic-
Crecaccous boundary to Calpionellid standard
zone C.
Family PaTULIBRACCHIO/VE Pessagno, 1971
emend. Baumgaitner, 1980
Genus Angidohracchia Batmigartner, 1980
Angulobracchia (?) portnianni s.l.
Baumgartner, 1984
(Fig. 8D)
Angulohracchia (?) portrnanni Baumgartner, 1984:
757, pl. 2, fig. 3-
Angîdobraccma (?) portmanni s.l. - Baumgartner et al.
1993a: «8, pi.6I2U figs 1-4.
Angttlobracchia (?) portrnanni - Dumitrica et al. 1997:
30, pl 4, fig. 16.
Occurrence. — Samples KEL 7-16; from lower to
upper part of Calpionellid standard zone B.
Genus Halesium Pessagno, 1971
emend. Baumgartner, 1984
Halesium sexangtdum
Pessagno, 1971 sensu Steiger., 1992
(Fig. 8A)
Halesium sexangulum Pessagno, 1971: 25, pl. 1, figs 5-
6 ; pl. 2, figs 1-6. - Steiger Î992: 47, pl. 11 figs U 2.
Occurrence. — Samples KEL 2-7; from upper part
of Calpionellid standard zone B to zone C.
732
GEODIVERSITAS • 1999 • 21 (4)
Radiolarians from NW Turkey
Halesium irregularis
Steiger, 1992
(Fig. 80
Halesium irregularis Steiger, 1992: 47, pl. 11, figs 3-5.
Occurrence. — Sample KEL 16; in Calpionellid
standard zone B.
Halesium (?) sp.
(Fig. 8E)
Occurrence. — Samples KEL 9-20; from Jurassic-
Cretaceous boundary to uppcr part of Calpionellid
standard zone B.
Genus ParonaellaVes,sà%no^ 1971
emend. Baumgariner, 1980
Paronaella (?) tubulata
Steiger, 1992
(Fig. 81)
Paronaella (?) tubulata Steiger, 1992: 45, pl. 10,
fig. 10. - Jud 1994: 91, pl. 15, figs 18-19. -
Baumgartncr 1995a: 400, pl. 5183, figs 1-5 (H).
Occurrence. — Samples KEL 2-7; from upper part
of Calpionellid standard zone B to zone C.
Paronaella sp.
cf. P, (?) tubulata 1992
(Fig. 8F, G)
Occurrence. — Samples KEL 2-7; from npper part
of Calpionellid standard zone B to zone C.
Family PSEUDOAULOPHACIDAE Riedel, 1967
emend. Dumicrica, 1997
Gcwws Alievium Pessagno, 1972
Alievium nodulosum Dumitrica, 1997
(Fig. 8K)
Alievium nodulosum Dumitrica, 1997: 224, pl. 3,
fig. 9.
Occurrence. — Sample KEL 20; on Jurassic-
Cretaceous boundary.
Alievium regulare (Wu & Li, 1982)
(Fig. 8L)
Praeconocaryomma regulare Wu & Li, 1982 : 65, pl. 1,
figs 1,3.
Alievium helenae - Schaaf 1981; 431, pl. 7, fig. 9;
{non) pl. 10, fig. 2a-b. - Baumgartner et al. 1995a:
80, pl..5228, figs 1,3.4, non 2,5.
Alievium rtgulare - Dumitrica 1997; 221, pl. 2,
figs I2'l4; pl. 3 figs 1-3, 5.
Occurrence. — Samples KEL 2-23; from
Calpionellid standard zone À .subzone 3 to zone C.
Genus Bectis Wu, 1986
Becus triangulocentrum
Dumitrica, 1997
(l*ig. 8J)
Becus triangulocentrum Dumitrica, 1997: 216, pl. 1,
figs 8-9; pl. 2, figs 1.2,4, ?3, ?5, ?6.
Alievium belenae — Baumgartner et al. 1995a: 80,
pl. 3228 (/>w), fig. 2, non 1-4 = Alievium regulare^ 5 =
Becus helenae.
Occurrence. — Samples KEL 16; in Calpionellid
standard zone B.
Remarks
Our specinien diflers from Becus helenae (Schaaf.
1981 ) by having three nodes at ihe centêr of the
circle of nodes on each side. It ditfers from
B. gcmtntttusA^u, 1986 by having rwelve nodes
composing a circle rathêr than niuc. It mute clo-
sely resembles B. triangulocentrum Dumitrica,
1997 by having rwelve nodes making up a circle
on cach face and by having diree nodes in the
central area insidc the circle.
Family SPONGlJRIOAE Haeckel, 1862
Genns Archaeospongoprunum Pessagno, 1973
Archaeospongoprunmn patricki
M, 1994
(Fig. 7C)
Archaeospongoprunum patricki ]\xày 1994: 63, pl. 4,
figs 2-4. — Baumgartner et. al. 1995a: 110, pl. 5042,
figs 1 (H)-4. - Dumitrica étal. 1997: 21, pl. 2, fig. 3.
Occurrence. — Samples KEL 2-23; from
Calpionellid standard zone À subzone 3 to C.
GEODIVERSITAS • 1999 • 21 (4)
733
Mekik F. A.. Ling H. Y., Ôzkan-Altiner S. & Altiner D.
CONCLUSIONS
The résolution of radiolarian bioevents incrcases
with the fine sampling interval in section KEL
(15-20 meters) and the stepwise initial occurren¬
ce of Cretaceous radiolarian taxa Ls acccncuatcd.
This graduai appcarancc of the taxa is probably
an artifact of selccth'c prescrv^ation becaiise taxa
such as Alieinum rvgidjire, Dicerosatimialis dicra-
nachanthos, Deinattts dianiphidlus, Acaeniotyle
diaphorogonas ArvhueQdlcïyomitra apïarium,
Emiluvia pessagnoiy htntànellium berrulsianumy
and Hstium rartcosiitttany among oihers, appear
at chrono.stratigraphically lower Icvels in other
European sections (sec Baumgartner e^aJ. 1995a)
than they do in section KEL (Fig. d). Sélective
préservation, the lack of a sudden change/turn-
over in radiolarian fauna at the Jurassic-
Cretaceous boundaiy and only two samples from
the latest Tithoniari inukc the dclincation of the
Jurassic-Cretaceous boundary impossible in sec¬
tion KEL at this timc. Ucspite preservational
problems, a typical Tethyan radiolarian fauna
consisting of 33 généra and 36 spccies are illus-
trated from Turkey for the (Irst lime.
Acknowledgements
We wish to thank Dr. P. Dumitrica for his kind
and constructive review of an earlier version of
this manuscript. We also thank Dr. L.
O’Dogherty for his thorough icvicAv and
thoughrful suggestions which grcatly improvcd
our paper. Many thanks arc also due to Dr. A.
Ohler for her careful corrections of syntax, espc-
cially wirh German spellings. Mr. M, Howland
and Ms. Dian Molsen (both from Northern
Illinois Llniversity) kindly helped with preparing
the figures and plates.
REFERENCES
Aita Y. 1987. — Middle Jurassic ro Lower Crciaceous
radiolarian biostratigraphy ol .Shikokii with référen¬
cé to sclecied secrion.s in Lombardy Basin and
Sicily. Science Reports of the Tohoku Utîiversity,
Sériés 2: Geology 58 (1): 1-91.
Aita Y. & Okada H. 1986. — Radiolanans and nan-
nofossils from the uppermost Jurassic and Lower
Cretaceous straia of Japan and Tethyan régions.
Micropitkonmlogy 32 (2): 97-128.
Allenian F., Catalano R.» Fares F. Remanc J.
1971. — Standard calpioncllid /.onalion of the
western Mcditerranean Province. Proceedings ofthe
Second PLtnktonic Conférence, Rome 1970^ 2:
1337 1340.
Altiner D. 1991. — Micrnfossil biostrarigraphy
(niainiy foraminifers) of che Jurassic-Lower
Cieiaceous carbonate successions in rnïrrhwcsiern
Anaiolia ("Jiirkey). Geologica Romana 27; 16'^-2I3.
Altiner D. & Ôzk.in S. 1991. — CalpionclÜd zona¬
tion in norrhwesiern Anatolia (Turkey) and calibra¬
tion of tite stratigraphie ranges of somc benthic
foraminifera at rhe Jura.s.sic-Cretaceous boundar)'.
Geologk'it Rinnnnn 2~: 215*235.
Altiner D., Koeyigit A., Farinacci A., Nicosia U. &
Conti M A. 1491. —jurassic-lrtAVcr Octaceous of
the souihcrn part of northwestern Anatolia
(Turkey). Geo/ogiên Rom/t/m 27'- 13-80.
Baumgartner P. O. 1980. — Latc Jurassic
Hagiastridae and Patulibracchidac (Radiolaiia)
from ihc Argolis Peninsula (Peteponnesus, Creece).
Micropitlconwh^ 26 (3): 274-322.
—• 1984. — A Middlc Jurassic Early Cretaceou-s low
latitude radiolarian zonation based on uniiaiy asso¬
ciations and age of Terhyan radiolarites. Eclogae
geologioic HeEctitie 77 (3); 729-841.
— 1987. — Age and genesis of fethyan Jurassic
radiolarite.s. Eclogae geologicae Helvetiae 80 (3):
83L879.
— 1992. — Power Crciaceous radiolarian blostrati-
graphv ofr Northern AusCraiia (ODP Mtes 765 and
"^66 and DSDP site 261) Argo Abyssal PUin and
Lower Exuiouth Plateau, hi Gradsteiri F. M.,
Liulden J. L. teds). Proccedings of the Océan Drilling
Progranc Scietitiflc RcsultSy College Station. Texas
123:290-342.
— 1993. — Furly Cretaceous radiolarians of the
Northeast Indian Océan (I.eg 123: Sites 765, 766
and DSnP Site 261): The Aniarctlc-Terhys
connection, in Lazarus D. & De Wever P. (cds),
InrerRad Vf Marine Micropahoniology 21:
329-352.
Baumgartner P. (T. Rariolini A., Carrer E. S., (.’onti
M., Corteac G., Danellan T., De Wever P.,
Dumitrica P.. DumiiriLa-lud R.. Corican S., Guex
J., HuJl D. M.. Kito N.. Mareucci M.. iVlaisiioka
A., Murchey B., O’Dogheriy I., Savary ].,
Vishnevskaya V.. Widv D. iR. Yao A. 1995h. —
Middlc Juras.sic to Earlv Cireraceous radiolarian bio-
chronology of Tetht's based un unitary assnciarions,
in Baumgartner P. O., O'Dogherty L., Gorican S.,
Urt]uhart E., Pillevuit A. A' De Wever P. (eds),
Middie Jurassic to Lower Creraccous Radiolaria of
l'ethys: occurrences, systematics. biochronology,
Mémoires de Géologie^ Lausanne 23 : 1013-1048.
Baumgartner P. O. & Bernoulli D. 1976. —
Stratigraphy and radiolarian fauna in a Late
734
GEODIVERSITAS • 1999 • 21 (4)
Radiolarians from NW Turkey
Jurassic-Early Oecaceous section near Achladi
(Evvora, Eastern Greece). Eclogae geologicae
Helvetiae 69 (3): 601-626.
Baumgartner P. O., O'Dogherty L.. Gorican S.,
Dumitrica-Jud R., Dumitrica P., Pillcvuit A.,
Urquhari £., Matsuoka A., Danelian T., Bartolini
A., Carter E. vS., De Wever P., IGto N.. Marcucci
M. & Steiger T. 1995a. — Radiolarian catalogue
and systemacics of Middle Jurassic ta Early
Cretaceous Tethyan gênera and spccics, in
Baumgartner P. O., O'Dogherty L., Gorican S.,
Urquhart E., PillevuLr A. ôf De Wever P. (eds),
Middle Jurassic ro Power Crctactous Radiolaria oF
Tethys: occurrences, systematics. hiochronology.
Mémoires de Géologue Lausanne 23 : 3*^*6S5.
Bown P. R. & Ozkan S. 1992. —• Calcareous nanno-
fossil biostratigraphy and corrélation across the
Jurassic-Cretaceous boundary. Mentori di Scienze
Geobgischc 43:77-87.
Bralower T. J. 1990. — Power Crctaccoiis nannofossil
stratigraphy ol ihe Ctrear Valley Sequence,
Sacramento Valley, California, Cretaceons Research
11: 101-123.
Bralower T. J. , Moncchi S. & 7'hierstcin H. R.
1989, — Calcareous nannofo.s.sil stratigraphy and
corrélation with the upper M-sequence magnetic
znomÀiizs. ManneMicrupaicontohgy 14: 15.3-235.
Cecca F., F.nay R. &c Le Hagarat G. 1989. —
L’Ardescien (Tithonique supérieur) de la région
stratotypique : séries de référence et faunes (ammo¬
nites, calpionelles) de la bordure Ardéchoise.
Documents des Sciences de Lyon 107 : 1-116.
Channel J. £. T., Bralower T. J. Grandcs.so P.
1987. — Biostrarigraphic corrélation of M-.sequen-
cc polarity dirons Ml to M22 ut Capriolo and
Xausa (Southern Alps, Italy). Earth and Planetary
Science Letten 85: 203-221.
Channell J. E. T.i F.rba F.. ÔC Lini A. 1993- —
Magnerosiratigraphic calibration of the Late
Valanginian carbon isotope event in pelagic limes-
tones from Northern Irai) and Switzerland. Earth
and Planetaiy Science Letters 118: 145-166.
Channel J. E. T. & Grandesso P. 1987. — A revised
corrélation of magnetozxines and calpionellid zones
based on data from Italian pelagic Ümestone sec¬
tions. Earth and Planetarv Science Letters 85:
222-230.
Colloque 1975- — Colloque sur la limite Jurassique-
Crétacé Lyon/Neuchàrel (1973). Mémoires du
Bureau des Recherches Géologiques et Minières 86,
394 p.
Couper M. K. £. 1985. — Nannofossils across the
jurassic-Cretaccous boundary in the Tcthyan
realm, in Michelson O. 6i Zeis.s E. (eds),
Proceedings on the International Symposium on
Jurassic Stratigraphy^ Copenhagen 2: 429-443.
Dumirrica P. 1995. — Systematic framework of
Jurassic and Cretaceous Radiolaria, in Baumgartner
P. O., O'Dogherty L., Gorican S., Urquhart £.,
PilIevLiit A. & De Wever P. (eds), Middle Jurassic
to Power Cretaceous Radiolaria of Tcihys: occur¬
rences. systemarics, biochronologyr Mémoires de
Géologie, Lau.sannc 23 : 19-35.
Durniirica P. 1997. — On the status of the Power
Cretaceous tadiolarian species Alïevitmi helerute
Schaaf and ol other reiared spccies Re\>ue de
Micropaleontolo^e 40 (3) : 211-226.
Duinitrica P. ôc De Wever P. 1991. — Assignation to
Radiolaria of two Upper Jurassic species previously
described as Foraminifèra; s)'stematic conséquences.
Comptes Rendus de L 'Académie des Sciences^ Paris,
Scrie II. 312 : 553-558.
Dumitrica P., Immenhauser A. & Dumitrica-Jud R.
1997. — Mesozoic radiolarian biostratigraphy
from Masirah Ophitdite, Sultaiiatc td Oman.
Part 1: Middle Triassic, UpperinoSt Jurassic and
Power Cretaceous spumêlfatians and mulû-seg-
mented nas-sclarians. Bulletin of rhe Nazinnal
Muséum ofNa-turul Science 9: 1-106.
Erb:i I:. & (^iiadrio B. 1987. — Biostratigrafia a
Nannofossili calcarei, Calpionellidi e For.aminiferi
plancmnici dell.t M.aiolica (Titoniano siipcriore-
Aptuno) nclle PreaJpi Brc-sciani (balia sertentriona-
le). Rtvista ïtabana di Paleontologia e Stratigrafia-
93: 3-1U8.
Farinacci A., Malantrucco G.. Mariotti N. & Nicosia
U. 1981a. — Ammonirico Rosso faciès in the fra-
mewoik of the Martanni Mouncains;
Paleocnvironmental évolution clunng Jurassic:
311-332, in Farinacci A. &c Elmi S. (eds)/
Proceedings of the Rom Ammonitico Symposium.
Farinacci A.. Mariotti N., Nicosia U., Pallini G. &L
Schtavinotto F. 1981b. —Jurassic .sédiments in the
Umbria-Marchean Apennine.s: an alternative
model: 333-398, m Farinacci A. iR. Elmi S. (eds)»
Proceedings vfthe Rosso Ammanltico Symposium.
Foreman H 1973 — Radiolaria from rhe D.SDP
Leg 20: 249-305» in Fleezen R. C.» MâcGre^or
J. D. et al. (eds), Initial Reports of the Deep Sea
Drilling Project. U.S. Government Printing Housc,
Washington D.C.
Foreman H. P. 1975. — Radiolaria from the North
Pacific, Deep Sea Drilling Project Leg .32: 579-676,
in T.arsoii R. L., Moberly. R. ci ai (eds), Initial
Reports of the Deep Sea Drilltng Project. US
Government Priiuing Housc, Washington D.C.
Griin B. & Blau J. 1997 — New a.specrs ot calpioncl-
lid biochronology: proposai for me revised calpio¬
nellid zonal and suhzonal division. Revue de
Paléobiohgie 16 (l) ; 197-214.
Flocdcmacket Ph. J. 1987. — Corrélation pos.sibüitics
around the jurassic/Crctaccous boundar>^ Scripta
Geologica 84: 1 -55.
— 1991. — Tethyan-Boreal corrélations and the
JurassfC-Creraceous boundary. Newsletter of
Stratigraphy 25 (1): 37-60.
Hull D. M. 1995. — Paleogeographic significance
and morphological diversity of the Family
GEODIVERSITAS • 1999 • 21 (4)
735
Mekik F. A., Ling H. Y., Ôzkan-Altiner S. & Aitiner D.
Parvicingulidac fRadiolaria). Mivropaleontology A\
(1): 1-48.
Hull D. M. 1997. — Upper furassic Tethyan and
Southern Boréal radiolarians From western Norih
America, Micropakontolo^^ (2): 1-202.
Jeletsky ). A. 1984. — Jurassic-Creiaceous boundar)'
beds of Western and Arcric Canada and ihe pro-
blem of thc Tiihonian-Bcrriasian stages in tlu*
Boréal lealm, in Wesiermanii G. E. G. lcd.),
Jurassic-Cietaceous biochnanologj' and biogeogra-
phy of North Amçfica, Ceolo^icill Society of
Canadii^ Spécial Paper T^\ 175-255.
Jud R. 1994. — Biüchronology and Systemadcs ol
Early Cretactous radiularians ol rhe Western
l ethys, Mémoires (k Lausanne 19, 147 p.
Kemper b. , BawsfHi P. F. & Thielov J ‘P- 198]. —
Ammonites of Tethyan ancesti^' in the early Lower
Oetaceous of norihwest Europe. Paleontology 24:
251-311.
Kiessling W. 1995. — New nidiolarians from thc eur-
liest C'.reiaccou.s of the Sulianate of Oman (Wahrah
Formation>. Jebel Buwaydah). PaUiontologischv
Zeitschnfxiy?^ (3/4): 321-342-
— 1996. — Faciès chaiactcrization of mid'Mesoxoic
deep waeer sedimçntvS by quanritarive analysis of
siliceous microfaunas. yv/c;w35: 237-274.
Kiessling W. Scasso R. J 996. — Ecological pers¬
pectives of Late Jura.ssic radiolarian faiinas from thc
Antarciic Pcninsula. Georesenreh Forum 1-2:
317-326.
Le Hcgarar G. & Remanc J. 1968. — Tithonique
supérieur et Berriasien de la bordure cévenole.
Corrélations de$ ammonites fl des calpionclles.
Geobioi 1: 7-70.
Lowric W. & Channcll J. E. T. 1983- —
Magnetostritigraphy of the Jurassic-Cretaceous
boundary in the Maiolica limcstonc (Umbria.
Iraly). Ckok^' 12:44-47.
Mat.suoka A. 1995a. — Radialaria-based Jurassic/
Crctaceous boundary in Japon. Proccedings of fhe
Î5th înrvrntltivnof Symposium ot Kyungpook
Natiouoi University. 219-2.42.
— 1995b. —Jurassic and Lower Cicraccous radiola¬
rian /tinaiion in Japan -and in ihe western Pacific.
The fsl/indArc 4; 140-153-
— 1995c. — Latc Jurassic tropical Radiolaria;
Vallupus and Jts relatcd forms. Palcûgeogmphy,
Paleoclnnotology, PaUvccology 119: 359-369.
— 1995d. — Middlc Juiassic-l.owcr Crclaceous
radiolarian ^'onatiori iu japan and the Western
Pacific, and âge assignmenrs based on the iinitar)'
associations niethod, lu Baunigartner P. O.,
O’Doghcrt}' L., Gorican S.. Urquharr E., PiÜevuir
A. & De We\cr P. (eds), Vliddle Jurassic to Lower
Cretaceous RadioJaru of 3 cthys: occurrences, .syste-
matics, biochconology, Mémoires dr Géologie,
Lausanne 23: 1049-1057-
Matsuoka A. & Yao A. 1986. — A newly proposed
radiolarian zonation for the Jurassic of Japan.
Manne Micropiileontülogy 1 l (1-3): 91-106.
Nakascko K. & Ni.shimura A. 1981. — Llpper
Jurassic and Cretaceous Radiolaria from the
Shimantü Group in Southwest Japan. Science
ReportSy ColUge of General Education Osaka
IMvcfsity 30 (2‘): 133-203-
O’Dogherr)’ L. 1994. — Biochronology and paleon-
tologv of Mid-Crt'iaceous radioLiri,ins from
Nortnertt Appenine.s (lialy) and Becic Cordillera
(Spain). Mémoires de Géologie, Lausanne 21,413 p.
Ogg J. G. 1992. — Jurassic magnetic polariiy ciïne-
stalc: 12-13, In Westermann G. E. G. (eJ.), The
Jurassic of the (Jirntm'Pacific. Cambridge
University Press» Cainbridgc.
Ogg ]. G. & LowJ'ie W. 1986. — Magneto-
stratigraphy of tlio Jur.issic-Cretaceous boundary.
Geolog^' I4: 547-550.
Ogg J. G., liasenyager R. W.. Wimbledon W. A.,
CJianel J. E. I . ôw Br.dower F. J. 1991. —
Magnctosiratigraphy of thc jura.s.siL'Grcraccou.s
boundary inrerval. Tethyan and English faunal
reaims. Cretaceous Research 12: 455-482.
Oldri/ F. & Tavera J. ^4. 1989. — The significance
of Mediterranean ammonites wiih regard lo the
iraditipnai ) urassic-Cretaceous bt)undary.
Cretaceous Research 10 : 221-237.
Ozkan S. I993.i. — Caleareoas nannofossil and
CalpioneÜid hiosiratigraphy of the Upper jurassic-
Lower Cretaceous in northwesl Anatolia, Turkey.
Phr> Thesi-s (unpublished), University College,
London. 270 p.
— 1993b. — Calcareous nannofossils from thc Late
luras.sic-Eaily Cretaceous of Northwest Anatolia,
Tufkey. Geological Journal 28:295-307-
Pc.ssagno E. A. 1971- — Jurassic and Creraceous
Flagiasiridac from thc Blakc-Bahama Ha-sin
(Site 5A. jOIDKS I.cg 1^ and the Grcai Valley
Scquence. C’alifornia Coa.st Ranges. Bnllettns of
American Raleontology (264): 5-83.
— 1977a. — Upper Jurassic Radiolaria and radiola¬
rian biostraiigraphy ofihe (>alilnrnia Coasr Ranges.
MicropaleotnologŸ 23 (l)‘ 56-113.
— 1977b- — Lower Cretaceous radiolarian bio.snati-
graphy of thc Créai Valley Sequcnce and
Franci.scan Complex, (Lalifornia Coasi Ranges.
Contributions to the Cushman Foundation of
boraminiferat Research, Spécial Publitaiion 15:
1-87.
Pcs.sagno E. A. & Blonic C. D. 1982. — Bizarre
Nassellariina (Radiolaria) from the Middic and
Upper Jurassic of North Aiiurica.
Micropaleontology 28 (3): 289-318.
— 199(1. — Implications ol new Jurassic stratigra¬
phie. geochronometric and pnleolntitudinal data
iVom thc Western Klamath tcrranc (Smith River
and Roguc Valley subtcrrancs). Geology 18:
665-668.
Pessagno E. A. Jr., Blome C. D., Fiuil D. M. & Six
W. M. 1993. — Jurassic Radiolaria from the
736
GEODIVERSITAS • 1999 • 21 (4)
Radiolarians from NW Turkey
Joséphine ophiolite and overlying strata, Smith
River subterranc (Klanrach Mountains), northwest-
ern CaliFornia and southwestern Oregon.
Micropaleontolog^ 39 (2): 93-166.
Pcssagno E. A., Blomc C. D.& Longoria J. F.
1984. — A rcviscd radiolarian zonation for the
Upper Jurassit of western North America. Bulkîtns
of American Ptlleonîolo^ ^7 (326): 5-51.
Pessagno F. A. Jr., BR)me C. U,, Cniter E. S.,
Macicod N.> Wl.alen P. A. & Ych K. Y. I987;v —
Parr IL Preliminarj' radiolarian zonation for rhe
Jurassic of Norrh America. Cushman foumlation
for Foraminiferal Research, Spécial Publication 23
(II), 28 p. ■ ^
Pessagno E. A. Jr., Canru-C.bapa A., Hull I). M. &
Meng X. 1997. — New data from North America
on the placement of the Jnrassic-dretaceous houndary:
108 [Abstracts]. InrerRad VIII. Paris.
Pessagno E. A, Jr., Lungoruï |. F., Macleod N. ik Six
W. M. 1987b- — Siudies ol North American
Jurassic Radîolaria. Paît I. Upper Jurassic
(Kimmcridgian upper Tithonian) Pantanelliidac
from the faman Formation, east-central Mexico:
tcctonostrangraphic, chronosrratigraphic and phv-
logenctic implications. Cushman Foundation Jor
Foraminiferal Research. Spécial Publication 23 (1):
1-51.
Pessagno E. A. Jr. & Mizutani S. 1992. — Radio¬
larian biozones ot North .America and Japan:
293-295. in Westermann G. E. C. (ed.), The
Jurassic of the Circum-Pacific. Cambridge
University Press, Cambridge, England.
Pop G. 1994a. — Systematte révision and biochrono-
logy of somc Bcrriasian-Valanginian C.ilpionclIid.s
(Genus RemantelLi). Geoiogica Carpathica 45 (6):
323-331.
— 1994b. — Calpionellid évolutive events and their
use in biostratigraphy. Rurnaninn Journal of'
Stratigraphy 76:7-24.
— 1996. — Trois nouvelles espèces de genre
Remaniella (Calpionellidae Bonct 1956). Comptes
Rettdus de l'Académie des Sciences, Paris, Série II,
322 :317-323.
Remane J. 1964. — Untersuchungen zui Systematik
und Stratigraphie der Calpionellen in den Jura-
Kreide Grcnzschichten des Vocontischen Troges.
Paleontographka AùteilîfngA 123: 1-57.
_ 1983. — Câlpionellids: 555-572, in Bolli H. M.,
Saundens J. B. ik Perch-NicKon K. (eds), Plankton
Stratigraphy. C’a m bridge University Press,
C'ambridge.
— 1986. — CalpionellicLs and the Jurassic-Cretaceous
houndary. Acta Geologica Hungarica 29: 15-26.
— 1991. — The jura.ssic-Crctaceaus houndary: pro-
blems of dcfinicion and procedure. Cretaceous
Research 12; 447-453.
Remane J., Bakalova-Nannva D., BorzaK., KnauerJ.,
Nagy E, Pop G. & Tardi-Filacz E. 1986. —
Agreement on the subdivision of the standard cal¬
pionellid zones defined at the llnd Planktonic
Conférence, Roma 1970. Acta Geologica Hungarica
29: 5-14.
Rüst D. 1898. — Neue Bcirrage zur Kenntniss der
füssilen Radiolarien aus Gesteinen des Jura und der
Krcidc. Paleontographica 1-67.
Schaaf A. 1981. — llatc Early Cretaceous Radiolaria
from Deep Sea Drilling Project Leg 62: 419-470,
in riiicde J., Vallier T. L. étal (eds), Initial Reports
oj the Deep Sea Drilling Projet't. VS, Government
Printing Office. Wa.shington D.C.
i^ngdr A. M. C. 1984. — Structural classification of
the tccronic history of Turkey. Turkish Geologicnl
Society, Ketin Symposium'. 37-62.
Jjengôr A. M. C. ik Yilmaz Y. 1981. — Tcthyan évo¬
lution of Turkey: a plate tectonic approach.
Tectonophysics 75: 181 -241.
Squinaboi S. 1914. — Comributo alla conoscenza dei
Radiolarii fossili dcl Veiieto. Appendice - Di un
généra di radiolari caratteristico del Sccondario.
Memnrie delTlnstiiuto Geologica délia Reale
Unimsha di Padom 2: 249-.^06.
Steiger T. 1992. — Svstcmatik. Stratigraphie und
Palcokdlogie der Radiolarien des Oberjura-
UiHerkreidcn-Grenzbereiches îrn Osterhorn-
Tirolüikuni (nordiiche Kalkalpen, Salzburg und
Bayern). Zitteliana 19: 3-188.
Taver.i |. M., Aguado R., Company M. & Oloriz E.
1994- — Integratcd biostraiigraphy of ihe
Durangire.s and Jacohi Zones (J/K Boundary) ai ihc
Puerto Espano section in Southern Spain (Province
oftÀirdoba). Geohios 17 : 469-476.
Thierstein H. R. !9"5. — CLilcareous nannofossils
biostratigraphy at the Jurassic-Creraceous bounda¬
ry, in Colloque sur la limite Jurassiquc-CTëtacé,-
L)'on. Neuchâtel, Mémoires du Bureau de Recherches
Géologiques et Minières 86: 84-94.
Thurow J. 1988. — Cretaceou.s radiolarian-s of the
North Atlantic Océan: ODP Leg 103 (Siie.s 638,
640 and 641) and DSDP Legs 93 (Site 603) and
47B (Site 398), ht Boillor G., Winterer E. L, et al.
(eds), Proceedings of the Océan Drilling Program,
Scienttfic Rcsidts, College Station 103: 379-418.
Trejo M. 1980. — Di.srnbucion c-stratigrafica de los
Tintinidos mesozoïcos mexicano.s. Revisia del
înstituto Mexicano del Petroleo 12 (4): 4-13
Wu H. R. àc Li M. S. 1982. — Radiolaria from rhe
olitostrome of the Zongzhuo Formation, Gyangze
Southern Xiwng ('l'ibel). Acta Mtcropaleontologica
Sinira, Bcijing 21 (1): 64-72.
Yang Q 1993- — Taxonomie studies of Upper
Jurassic {'l'ithoniaii) Radiolaria from the Taman
Formation, East-Central Mexico. Paleoworld,
Spécial Issue 3: 1-164.
Yang Q. tk Mat.suoka A. 1997- —A comparative
study on Upper Jurassic radiolarian bio-stratigraphy
of ihc Taman Formation, East Central Mexico and
the ODP site 801B section, west Pacific. Science
Reports of Niigata University 12: 29-49.
GEODIVERSITAS • 1999 • 21 {4)
737
Mekik F. A., Ling H. Y., Ôzkan-Altiner S. & Altiner D.
Yang Q. & Pessagno E. A. 1989. — Upper Tithonian
Vallupinae (Radiolaria) from the Taman
Formation, East Central Mexico. Micropaleontology
35 (2): 114-134.
Zakharov V. A. 1987. — The bivalve Buchia and the
Jurassic-Cretaceous boundaiy in the Boréal provin¬
ce. Cretaceous Research 141-153.
Zeiss A. 1984. — Comments on the paper by Jeletsky
J. A., in Westermann G. E. G. (ed.), Jurassic-
Cretaceous Biochronology of North America^
Geological Society of Canada, Spécial Paper 27:
250-253.
— 1986. — Comments on a tentative corrélation
chart for the most important marine provinces at
the Jurassic/Cretaceous boundary. Acta Geologica
Hungarica 29: 27-30.
Submitted for publication on 4 February 1998;
accepted on 13 October 1998.
738
GEODIVERSITAS • 1999 • 21 (4)
Late Cretaceous (late Campanian-early
Maastrichtian) radiolarian biogeography;
a review
Osamu TAKAHASHI
Department of Astronomy and Earth Sciences, Tokyo Gakugei University,
Koganei-shi, Tokyo 184-8501 (Japan)
takahasi @ u-gakugei. ac.jp
Takahashi O. 1999. — Late Cretaceous (late Campanian-early Maastrichtian) radiolarian
biogeography; a review, in De Wever P. & Caulet J.-P. (eds), InterRad VIII, Paris/Bierville
8-13 septembre 1997, Geodiversitas 2^ (4) : 739-750.
KEYWORDS
Late Cretaceous.
radiolarians,
Tethys,
Atlantic,
Pacific,
oceanic circulation.
ABSTRACT
Some characteristic species of Late Cretaceous radiolarians from central
Japan and the world are discussed. With respect to the relation berween
radiolarian distribution and latitude, Amphipyndax enessefft Foreman,
Theocampe abschnitta (Empson-Morin). Myltocercion acineton Foreman, and
Dictyomitra Limelltcostata Foreman were restricted to the low to intermediate
latitudes. LHhomelma héros Campbell & Clark, Lithomelissa hoplites
Foreman, Theocampe altamontemis (Campbell &: Clark), and Stichomitra
livermorensis (Campbell & Clark) would tend to be cosmopolitan; however,
only in the circum-Pacific région, they were apparently confmed to northeas-
tern Asia, northwestern North America, and the Antarctic. The existence of
the distribution of the Late Cretaceous radiolarians could be explained by
oceanic circulation patterns and it was important in determining Late
Cretaceous provincial boundaries of radiolarians.
GEODIVERSITAS • 1999 • 21 (4)
739
Takahashi O.
MOTS CLÉS
Crétacé supérieur,
radiolaires,
mer mésogéeunÇ)
Adanrique,
Pacifique,
circulation océanique.
RÉSUMÉ
Biogéographit des radiolaires du Crétacé supérieur (Campanîen supérieur-
Maastrichtien inférieur) : bilan.
Quelques espèces caractéristiques du Crétacé supérieur du japon central et
du monde soni discutées. Tenant compte des distributions paléolatitudi-
nales, il apparaît que Amphxpyndax enesseffi Foremaii, Theocampe ahschnitta
(Empson'Morin)j Myllocercian adneton Forcman, and Dirtyomirra lamellico-
stata Forcman sont restreints aux basses latitudes ou intermédiaires, alors que
Lithomelîssa héros Campbell ÔC Clark, Lithomelissu hoplites Foreman,
Theocampe altamontensis (Campbell &: Clark), and Stkhojmtra livemorensis
(Campbell 6c Clark) tendraient à être cosmopolites. Néanmoin-s, dans les
régions drcum-Pacifique,. ils sont apparemment confinés au Nord-Est de
l’Asie, au nord-oufcsrdc l'Amériquedu Nord et à l’Antarctique. L’existence de
cette distribution au Crétacé supérieur pourrait être expliquée par des cou-
ranrs océaniques qui ont dércrminé le.s limites des provinces fauniques de
radiolaires à cerre époque.
INTRODUCTION
Radiolaria are effective indicarors of various
oceanic environments; paleoceanographic,
paleoecologic, bathyinetric, etc. Since Haeckel
(1887), many paleobiogeographic studies of
radiolarians hâve been donc during the past
100 years. However, most hâve been restricted to
the Cenozoic (c.g., Casey 1971; Goll &
Bjorkiimd 1971; Petrushevskaya 1971). and very
litrie has been published on radiolarian paleobio-
geography from the Mesozoic. Pessagno (1976)
establishcd a radiolarian zonation for the Upper
Cretaceous portion of the Créât Valley sequence
of Northern California and stated that radiola¬
rian spedes common to the Upper Cretaceous
strata of the lechyan, Boréal, and Austral Faunal
Provinces are eurybarhic and would rend to be
more cosmopolitàn. However, commencing with
the study of Empson-Morin (1984), Upper
Cretaceous radiolarians hâve been appreciated as
valuablc biogeographic tools. She described the
Upper Cretaceous radiolarians as effective envi-
ronmental indiçators showing variations in res-
ponse to deptb and/or latitude.
Recently, a preliminary study by Takahashi ôé
Ishii (1993) stated that the Upper Cretaceous
(late Campanian-carly Maastrichtian) strata of
central japan include two characteristic radiolar¬
ian faunas. I hâve noticed in the Late Creta¬
ceous Northwestern Pacific Océan an example
showing two parallel distributions of characteris¬
tic radiolarian feunas; the similarity of the nor-
thern Northwestern Pacific fauna and the lack of
similarity of the Southern Northwestern Pacific
fauna to species of the California Upper
Cretaceous (e.g., Campbell & Clark 1944).
LATE CAMPANIAN TO EARLY
MAASTRICHTIAN RADIOLARIANS
FROM CENTRAL JAPAN
GEOLOGIC SETTING AND RADIÜL/VRIAN FOSSILS
OF THF Shüya Formation, northurn central
Jafan
The Shoya Formation (Watanabe 1958) is expo-
sed in an area approximatcly 0.5 km wide and
4,5 km long, and located 100 km northwest of
Tokyo (Fig. 1). It con.sists ofthrcc fining-upward
cyclic sequences of marine sedimentary rocks
about 600 m in total thickness, lacking pelagic
iruerbeds. The lower and middlc parts of each
sequence are composed of poorly-sorted, black,
medium- or fine-gtained sandstone, which grade
upward into welLsorted, bedded, dark gray sand¬
stone. The upper part of cach sequence is com¬
posed of alternations of mudstone and .sandstone
with dark gray, siliceous mudstone. The siliccous
mudstone frequently contains thin (several milli-
740
GEODIVERSITAS • 1999 • 21 (4)
Late Cretaceous radiolarian biogeography
SapporoT
km 500
36'’N-
35°N-
Shoya Formation
Vladivostok,
■i
To
40'
IO Séoul I
36-N
Kobûtùke Group
LEGEND I
I I T erliary & Quaternary-
Late Cretaceous déposits
Eariy Cretaceous déposits
Jurassic déposits
[,-<<] Jura.-Ôret. metàmorphic rocks
rf4%Fukuoka’'^
;akâ
Tokyo
135°
140°
139^E
140°E
Fig. 1. — Index map of the study
area showing the position of the
Shoya Formation and the
Kobotoke Group in central Japan.
mcters) layers of interbedded, greenish-gray, tuff-
aceoiis mudsrone or ruff. Some sajîdsrone units
contain abondant, yet poorly preserved molluscs,
including Spon^iyltu Jfiponicus, Cûr/iium{})j
Ostreûy other pelecypods, brachiopods, and corals
(Amano &c Marui 1958). Based on cectonic
configuration, litho- and bio-facies, rhc Shoya
Formation is interpreied as a typical forearc
sequcnce at the eastern margin oF rhç Asian
Continent (Ishii &C Takahashi 1993).
Radiolarian fossils were encountered in the dark
gray or black siliceous mudstone parts of the
strata. The radiolarian assemblage conrains
17 species belonging to 10 gênera (Table l),
some of which are shown in Fig. 2A-S. The
assemblage rarely containcd Arnphlpyndax tylolm
Foreman and ^4. enesseffi Foreman, and is charac-
terized by chc occurrence of Lithomelissa héros
Campbell Ôc Clark, L. hoplites Foreman,
Theocampe altumontensis (Campbell & Clark),
and Stichoniitra livermorensis (Campbell ôc
Clark).
Geolocuc settjng and radiolarian fossils
OF l’HF Kobotoke Group, Southern central
Japan
The Kobotoke Group (Makino 1973; Sakai
1987) is exposed in an area approximately 10 km
wide and 70 km long, and located 50-100 km
wesr of Tokyo (Fig. 1). It îs composed of rhyth-
mically alrernating beds (severai centimeters
thick) of fine- to medium-grained arkosic sand-
stone and black mudstone, occasionally inclu¬
ding cliert and lime.stone blocks and
conglomerate lenses in the mudstone dominant
part. The chert is mosrly red and rhyrhmically
bedded and the limesfone is dark gray in color.
The conglomerate is composed of pebbles of
limcstone, chert, sandsrone, and mudstone
within a sandy matrix, and they are found in
small bodies sporadically scartered in the sand-
stone layers.
The strata show normal graded bedding and are
steeply dipping northward in a monoclinal struc¬
ture, nevertheless, the geological âges of the South¬
ern beds are younger than those of the northern
beds (Ishii et ai 1990). These Icatures, the over-
all younging towards the south by répétition of
the strata wirhln imbricate thrusts, suggest a
typical strata distribution for an accretionary
prism (Ishii ôt Takahashi 1993).
Radiolarian fossils were encountered in the sili-
ceous, dark gray or black mudstone parts of the
strata. The radiolarian assemblage contains
11 species belonging to 6 généra (Table 1 ), some
of which are shown in Fig. 3A-M. The assembla¬
ge is characterized by the prédominant occur¬
rence of Amphipyndax tylotus Foreman and
GEODIVERSITAS • 1999 • 21 (4)
741
Takahashi O.
Table 1. — Occurrence and relative abundance of radiolarians of the Shoya Formation and îhe Kobotoke Group. Radiolarian abun-
dances are categorized as common (C) and rare (R). Plus (+) means presence. but recognized with such difficulty that no estimate
of abundance could be made.
Taxon
Shoya Formation
Kobotobe G.
Sh-1
Sh-2
Sh-3
Sh-4
Sh-5
SM
St-2
Amphipyndax alamedaensis (Campbell & Clark)
-
C
-
-
-
R
R
A. enesseW Foreman
R
-
-
R
-
C
R
A. plousios Foreman
-
C
-
R
-
-
-
A. stocki (Campbell & Clark)
C
C
+
C
+
C
C
A. tyhtus Foreman
-
c
+
C
-
C
C
Archaeospongoprunum salumi Pessagno
C
—
—
C
-
-
-
A. stocktonensis Pessagno
-
-
-
R
-
-
-
Comuteita caliiornica Campbell & Clark
-
-
-
R
-
R
-
Dictyomitra andersoni (Campbell & Clark)
R
c
-
C
+
C
C
D. lamellicostata Foreman
-
-
-
-
-
C
c
D. multicostata Pessagno
C
c
+
C
_
C
c
Eribotrys anax Foreman
-
-
-
R
-
-
-
Lithomelissa héros Campbell & Clark
-
-
-
C
-
-
-
L. hoplites Foreman
-
-
-
C
+
-
-
Myllocercion acineton Foreman
“
-
-
-
C
-
Praeconocaryomma dauerhafta (Empson-Morin)
_
_
-
_
-
R
-
Pseudoaulophacus floresensis Pessagno
-
-
-
-
-
R
R
Rhopalosyringium magnificum Campbell & Clark
-
c
-
-
-
R
C
Saturniforma brionesensis Pessagno
-
-
-
C
-
-
-
sciadiocapsid
R
-
-
c
-
-
-
StichomiTra asymbatos Foreman
R
c
—
R
C
R
S. livermotonsis (Campbell & Clark)
-
c
-
C
-
-
-
Theocampe ahschnitta (Empson-Morin)
-
-
-
-
-
C
R
T. altamontensis (Campbell & Clark)
-
-
-
c
-
-
-
Theocapsomma amphora Campbell & Clark
R
c
-
c
—
-
-
A. enessefft Foreman, and also characterized by
the occurrence of Theocûmpe ahschnitta
(Empson-Morin), Dictyomitra lamellicostata
Foreman, and Myllocercion acineton Foreman.
AGEASSIGNMENT
The rwo radiolarian assemblages from the Shoya
Formation aitd the Kobotoke Group hâve somc
différences tn thcir componcnts. Howevcr, thcse
assemblages contain common and/or individual
typical species of the Amphtpyndax tylotus zone
(Foreman 1977; Sanfilippo & Riedel 1985). For
example, the first appearances of Lithomelissa
hoplites and Theocampe ahschnitta are included
near the base of the A. tylotus zone. The top of the
zone is defined as the Maastrichtian/Danian
boundary recognized by the last occurrences of
A. tylotus, L. hoplites, and Dictyomitra Ltmellicosta-
ta (Foreman 1968, 1977; Sanfilippo & Riedel
1985). Wirh respect to the othct species, the first
appearances of Lithomelissa héros, Theocampe alta-
montemis^ and Myllocercion acineton are
Campanian (Pessagno 1976; Foreman 1978;
Taketani 1982; Empson-Morin 1981; Sanfilippo
& Riedel 1985), whereas Stlchomltm liiermorensîs
first occurs in the Coniacian (Moore 1973). The
final occurrences of these species also correspond
to the top of the A. tylotus zone at the
Maastrichtian/Danian boundary (Foreman 1968,
1978; Sanfilippo &: Riedel 1985).
742
GEODIVERSrrAS • 1&99 • 21 (4)
Late Cretaceous radiolarian biogeography
Fig. 2. — Late Campanian-early Maastrichlian radiolarian fauna from lhe Shoya Formation, northern centra) Japan. A, Amphipyndax
tylotus Foreman; B. Amphipyndax enesseffi Foreman; C. Amphipyndax alamedaensis (Campbell & Clark): D, Amphipyndax stocki
(Campbell & Clark); E, Stlc^omkra livermorensis (Campbell & Clark): F. Dictyomitra multicostata Pessagno; G. Drclyomitra anderso-
ni (Campbell & Clark): H, Lithomelissa haros Campbell & Clark; I. Lithomelissa hoplites Foreman; J, Theocampe altamoniensis
(Campbell & Clark): K. Theocapsomma amphora Campbell & Clark; L, Rhopalosyringium magnificum Campbell & Clark;
M, Cornutella californica Campbell & Clark; N, gen. sp. indet.; O, Sciadiocapsid gen. sp. indet.; P, Saturniforma brionesensis
Pessagno; Q, Orbiculiforma sp.; R, Archaeospongoprunum saiumi Pessagno; S, Archaeospongoprunum stockîçnensis Pessagno.
Scale bars: 0.1 mm
Therefore, rhese spedes of both assemblages reco-
vered from the Shoya Formation and the Kobo-
toke Group represent the Amphipyndax tylotus
zone which is indicative of a range from the late
Campanian to the early Maastrichtian in âge
(Foreman 1977, 1978; Sanfilippo & Riedel 1985).
GEOOIVERSITAS • 1999 • 21 (4)
743
Takahashi O.
Fig. 3. — Late Campanian>early Maastriçhhan radiolarian faunafrom the Kobotoke Group, soufhern central Japan A. Amphipyndax
tylotus Foreman; B, Amphipyndax enesseffi Foreman; C, Amphipyndax alamedaensis (Campbell & Clark): D. Amphipyndax stocki
(Campbell & Clark); E, Dictyomitra multicostata Pessagno; F, Diciyomitra ancfersom (Campbell & Clark); G, Dictyomitra lamellicosta-
ta Foreman: H. TTïeocampe abschnitta (Empson-Morin); I. Theocampe sp.; J. f^hopafosyringium magnificum Campbell & Clark:
K. Myflocercion acineîon Foreman; L, Pseudoaulophacus ftoresensis Pessagno, M. Archaeospongoprunum sp. Scale bars: 0.1 mm.
PALEOBIOGEOGRAPHIC
DISTRIBUTIONS OF LATE CAMPANIAN-
EARLY MAASTRICHTIAN RADIOLARIANS
Selected pairings of the assemblages from the
Shoya Formation and the Kobotoke Group were
compared by means of a similarity index (Jaccard
CoefFicicnt; Table 2). The results show that the
pairings between the Kobotoke Group (St-1 and
St-2) and the Shoya Formation (Sh-1, Sh-2, and
744
GEODIVERSITAS • 1999 • 21 (4)
Late Crecaceous radiolarian biogeography
Table 2. — A matrix of similarity values (Jl: Jaccard index) for
comparisons of radiolarian assemblages from each sample.
Shoya F.
Kobotobe G.
Sh-2
Sh-4
SM
St-2
Sh-1
0.38
0.44
0.29
0.36
Sh-2
0.40
0.41
0.50
Sh-4
0.28
0.26
St-1
0.78
Sh'4) yieldcd somewhat lower values rhan did
pairings from vvirhin each one. Namely, each
assemblage is characrerized by different species.
For example, the assemblage from the Shoya
Formation is characterized by the occurrence of
Liihomelissa héros Campbell ^ Clark, Litho-
melissa hoplites boœman. Theocampe altamonten-
sis (Campbell & Clark), and Stichoniitra liver-
motensh (Campbell & Clark), whereas the one
from the Kobotoke Group is characrerized by rhe
occurrence of Theoaimpe abschnitta (Empson-
Morin), Dictyornina lani&llkosuiîn Foreman, and
Mylloctrcion adnttvn Foreman.
Radiolarians from each sample occiir in ihe same
.siliccous mudstone lithofacie.s. and the rock
samplcs wcrc carcfully caken from non-foldcd,
non-overcurned, and non-metamorphosed parts.
Furthermore, in spite of varied sraces of préserva¬
tion, each radiolarian assemblage has ics own
characterisnc species, although the number of
skclctons may differ. d'hus, it is suggested ihat
the différences in coniponencs berween the two
Lace Crctaceous radiolarian assemblages may
bave been caused largely by oceanic environ¬
ment. In chis stüdy, 1 artempr to distinguish che
paleobiogeographic distributions of the seven
characteristic species of the radiolarian faunas,
and examine rhe différences in components and
their possible cau-ses from their worldwide distri¬
butions in Lite Crctaceous timc. The loailicics of
radiolarians are jllustrated in Figs 4, 5.
Lithomelissa hoplites (Fig. 2J) was reported from
California (Foreman 1968), the mid-Atlantic
Océan (Foreman 1977), New Zcaland (Hollis
1997), and Southwest Japan (Yamasaki 1987).
Lithomelissa héros (Fig. 21) was reported from
California (Campbell & Clark 1944; Foreman
1968; Pessagno 1976), New Zealand (Flollis
1997), and the mid-Atlanric Océan (Foreman
1978). Lithomelissa sp. were reported from the
northeast coast of New Zealand (Ballance et al.
1989; Hollis 1997), Southwest japan (Yamasaki
1987), and Hokkaido (Iwata & Tajika 1986).
Theocampe altamontensis (Fig. 2K) w^as reported
from the northeasr coast of New Zealand
(Ballance et al. 1989; Hollis 1997), rhe South
Atlantic Océan (Foreman 1977). the Antarctic
Océan (ling & Lazarus 1990; l.ing 1991),
California (Campbell & Clark 1944), Southwest
Japan (Muramatsu 1986; Yamasaki 1987), and
the Bering Région (Vishnevskaya 1986).
Stichoniitnt liverrnorejisis (Fig. 2F) was reported
from California (Campbell & Clark 1944;
Forernan 1968), the Bering Région (Visbnev-
skaya 1986), the Antarctic Océan (Ling 1991),
New Zealand (FloHi.s 1997), .Southwest japan
(Suyari 1986; Yamasaki 1987), and Hokkaido
(Iwata & Tajika 1986, 1989). Amphipyndax enes~
seffi (Figs 2C, 3C) was reported from the mid-
Pacific Océan (Moore 1973; Fimpson-Morin
1981), California (Pessagno 1969), the mid-
Atlantic Océan (Foreman 1977, 1978; Empson-
Morin 1984), Southwest japan (Suyari &
Hashimuio 1985; Muramatsu 19S6; Suyari
1986; Yamasaki 1987)» and Hokitaido (Iwata &
Tajika 1989). The occurrence from FIokkaido
(Iwata Tajika 1989) is the northernmost limit
of the range of A. enesseffi in the World.
Theocampe abschnitta (Frg. 31) was reported from
the mid-Pacific Océan (Empson-Morin 1981)
and Southwest japan (Muramatsu 1986;
Yamasaki 1987), Mylloeercion acincton (Fig. 3E)
was reported from ihe mid-Pacific Occan
(Empson-Morin 1981), California (foreman
1968), New Zealand (Hollis 1997), and the mid-
Atlantic Occan (Foreman 1978). Diçtyomitra
lamellicostata (Fig. 3H) was reported from the
mid-Atlantic Océan (Foreman 1977, 1978),
California (Foreman 1968), New Zealand
(Hollis 1997), and Southwest Japan (Suyari Se
Hashimoto 1985; Suyari 1986).
With respect to the relation between radiolarian
distribution and latitude, Amphipyndax enesseffi,
Theocampe abschnitta, Myllocerçwn acineton, and
Diçtyomitra lamellicostata were restricted to rhe
low to intermédiare latitudes except for New
GEODIVERSITAS • 1999 • 21 (4)
745
Takahashi O.
Fig. 4. — Distribution of Stichomitra llvermorensis (Campbell & Clark). Uthomelissa sp. (including L héros Campbell & Clark and
L. hoplites Foreman), and Theocampe altamontensis (Campbell & Clark) in the late Campanian to eariy Maastrichtian. Data are from
Campbell & Clark (1944). Foreman (1968. 1977). Pessagno (1976), Empson-Morin (1984). Muramatsu (1986), Iwata & Tajika (1986,
1989), Vishnevskaya (1986), Yamasaki (1987). Ballance et ai (1989). üng & Lazarus (1990), Ling (1991), Hollis (1997), and présent
research. This map has been synthesized from Barron et ai (1981). Smith et ai (1994), and Roberts & Kirschbaum (1995).
Fig. 5. — Distribution of Amphipyndax enessefff Foreman. Theocampe abschnitia (Empson-Morin), Myllocercion acineton Foreman,
and Dicîyomitra lamellicostata Foreman In the late Campanian to eariy Maastrichtian. Data are from Pessagno (1969), Moore
(1973), Empson-Morin (1981,1984), Suyari & Hashimoto (1985), Muramatsu (1986), Suyari (1986), Yamasaki (1987), Iwata & Tajika
(1989), Takahashi et ai (1989), Ishü et ai (1990), Hollis (1997), and présent research.
746
GEODIVERSITAS • 1999 • 21 (4)
Late Cretaceous radiolarîan biogeography
★ Amphipyndax enesseffi • Theocampe abschnitta a Myiiocercion acineton ■ Dictyomitra famellicostata
Fig. 6. — Relâlionshtp between Gordon's (1973) oceanic circuiation and the global distribution of lhe ses/en characteristic radiolarian
species. Amphtpyndax enesseffi, Thtfooampe aPschniffa, Myiiocercion acineion, and Dictyomitra lameflioostata were restrlcled lo the
low to intermodiale latitudes. Llidomelissa héros, Uthomelissa hoplites, fheocampe atiamnntensls. and SUchomitra Iive/rnorensls
would tend lo be codcnopolitan. howevef. ooly in the cimunvP^fânr région, they werw epparently confined to northeftstem Asie, nor*-
thwestem North America, and the Antarctic. In lhe fethys Sea and Atlantic Sca. therc wore more longitudinal channols which permil-
ted mlxing of lheir water with highei UtitudQ wdter. Intermediate tn high intitude radlolanans, theretore, reach much forther south to
lhe Tethyan and central Atlantic régions alOng lhe sPHways on the Leurasia. In contrasi. citculation in lhe norlhern Pacific Océan
dur'ing the Late Cretaceous was dominated by a clocKwise gyre. It made possibly contrasling distributions ot radiolanans in this time.
Zealand (Hollîs 1997)- Lithomelissa herosy
Lithomelissa Psoplites, Theocampe ait amont émis y
and Stichomitra livermorensis would tend to be
cosmopoiitan. Howevci, only in lhe circum-
Pacific région, they werc apparently confmed to
northeastern Asia, norrhwestern North America,
and the Anrarctic. Thar is, the paleobiogeogra-
phic distributions ol the particular species of
Late Cretaceous radiolarians seem to hâve reflec-
tcd water-masses or theif conditions.
Température is presumably a laritudinal compo-
nenr (e.g., Petrushevskaya 1971). Factors other
rhan water depth and température such as
nucrieni levels and water chemistry undoubtedly
controllcd radiolarian distribution and abundan-
ce (e.g., Anderson 1983)^ many of diese factors,
however, are also relatcd to water depth and tem¬
pérature (Pessagno 1976). Among fossil orga-
nisms, the clearly latitudinal distribution of
foraminifera in Cretaceous rocks indicates the
importance of température (e.g., Caron 1985).
T^mmonoids also seem to be influenced by tem¬
pérature as they are .separable into Tethyan (ixo-
pical) and Boréal assemblages (e.g., Obata &
Matsulcawa 1988). If the faunal distributions of
radiolarians are duc co différences in température
of the water masses, the distribution is possibly
influenced by the current Systems. Not only do
currents sepatate biogeographical régions, but
the currents themselves contain characteristic
radiolarian fiunas.
Using analogies with the modem world and évi¬
dence of past climates, Gordon (1973) recon-
strucîed global océan currents for the Late
Cretaceous. Fig. 6 shows the relationship be¬
tween GordonS (1973) oceanic circulation and
the global distribution of the seven characrerisric
radiolarian species.
Any discussion of Lace Cretaceous paleoenviron-
ments first rcquires a description of land-sca dis¬
tribution. which was significantly different from
the présent (Barron H ai 1981; Smith et al.
1994). Global marine transgression progressed
during Late Cretaceous time (e.g., Payton 1977).
GEOOIVERSITAS • 1999 • 21 {4)
747
Takahashi O.
The Tethys Sea and the Atlantic Océan wcre
broad at this rime, and thcre were more longitu¬
dinal channels (the norrhern Tethys and north-
ern Atlantic longitudinal seaways) which
permittcd inixing of iheir watcr vvîth highcr lati¬
tude watcr, not neccssarily at rhc surface of chc
water column. The circumpolar West Wind
Drift would hâve canscd cool currents to enter
the Norrh American mid-continental seaway and
the European shelf \eas (Gordon 1973)*
Intermediate lo high latitude radiolarians, thcre-
fore, reach much farther south to the Tethyan
and central Atlantic régions aJong the seaways on
the Laurasia. It was proved by bimodal radiolar-
ian faunas lound at the Latc Crctaccous Tethyan
and mid-Atlantic régions, and was clearly asso-
ciared wirh the Late Cretaceous transgressive
phase. Pessagno &c Blome (1986) referred to
Cordons model as being applicable to the
Middlc Jurassic world occanic circulations. They
also recognized the mixing ol warm and cool
watermasscs at the Tethyan and Atlantic régions
in that cime.
In contrast, circulation in the norrhern Pacific
Océan during the Lare Cretaceoies was domina-
ted by a clockwise gyre (Gordon 1973), with a
warm current (Paieo-Kuroshio Curreni) Howing
north on ils western inargin whcrc Amp/jf/))fNd^ix
enesseffî, Theocampe abschmttas Myllacercïon ad-
neton, and Dlctyormtrn Inmellicosmm rhrived, and
a cool current (Paléo-California Current) flowing
south on the eastern margin where Lithomelhsa
herosy Lithomdissa hoplites, Theocampe altamoN-
tensis, and Stichomitra livermorensis wcre success-
ful. Around ihc Japancsc Islands, two occanic
currents may have existed; one from ihc north-
ernmosr Pacific Océan and the othet from the
Equator. They crosscd cach other at the présent
position of the japanese Islands.
Acknowledgements
I gratefully acknowledgc the help of W. Kiessling
and F. Cordey who rend earlier drafts ol this
manuscript. I am indebted to H. Okada and
A. Ishii for cheir invaluable contributions and
criticism. Y. Ogawa and M. Matsukawa are thank-
ed for their helpful discussions during the course
of this study.
REFERENCES
Anuno M. & Marui N. 1958. — On the new' species
of Spondylus from the Cretaceous formation in
Nagano Prcrecrurc. Journal of Science, Kumamoto
Vnh^sity, Sériés B 1: 27-31.
Anderson Ô. R. 1983. — Radwlaria. Springer-Verlag,
New York, 35-5 p.
Ballance P. F., Rarron J. A., B|ome C. D., Bukry D.,
Cawood P. A., Cliapronicte G. C. H., Frisch R.,
Herzer R. H.j Nelson C. S., Quinterno P., Ryan
H-, Sclioll D. W., Stevenson A. Tappin D. G.,
Ôt ValÜer T. L. 1989. — Late Gteiaceous pelagic
sédiments, volcanic ash and hiotas from near tne
Louusville hor spot. Pacific Plate, palaeol.uitude —
42”S. Pt7LKogeography. Palaeoclnnatology. Palaeo-
ecohgy 1Ü5: 111-124.
Barron E. j., Nartison C. ti. A.. Soloan I. ]. L., &
Nay W, W. 1981 — Paicopography. 180 million
years agn to tlie présent. Eclognc geologicae helvetiae
74: 443'470.
Campbell A. S. & Clark B. L. 1944. — Radiolaria
front Upper Cretaceous of Middie C.ilifornia. Geo-
logictü Society of Ame rîca. Spécial Paper 5^: 1-61.
Camn M. 1985. — Crcuccous planklic foraminifcra:
17-86, in Bolli H. M., Saunders J. B. Ôr Perch-
Niclsen K. (eds), PLtnkUm Straîigraphy. t2anibridge
Llniversity Press, Cambridge
CaSey R, E. 197E — Distribution of polycystine
Radiolaria in the océans tn relation to physical and
Chemical conditions: 151-159. in Funnell B. M. &
Riedel W. R. (eds), The Micropalaeontoîogy of
Océans. Cambridge Univcrsity Prc.ss. Cambridge.
Empson-Morin K. VI. 1981. — Campanian
Radiolaria from DSDP site 313, mid-Pacific
Moumains, Micnwaleonrdogy Hz 249-292.
— 1984. — Deptn and latitude distribncLon of
Radiolaria in Campanian {Lite Creraceous) tropical
Jiul subtropical océans, Mieropnlconifllo^ 30:
87115.
Foreman H. P. 1968. — Llpper Maestrichtian
Radiolaria of California. Palaeontological
Association, London, Spécial Paper 3: iv i- 1-82.
— 1977- — Mc.so/oic Radiolaria from the Atlantic
Basin and its bordeiiands; 305-320, //y Swain F. M.
(ed.), Stratigraphie Miçntpaleontology of Atlantic
Biisin uiidBorderlands. Ehevicr, Amsterdam.
— 1978. — Mcsozoic Radiolaiia in the Atlantic
(^cean off the norrhwext toast of Africa, Deep Sea
Drilling Project. Leg 41: 739-761, in LanLelot Y.,
Seibûlü F., et al. (eds), Inhial Reports ofthe Deep Sea
Drilling Project 41. L'. S. Government Printing
Office. Washington D. C.
Go!l R. M. 6l Bjorkliind K. R. 1971. — Radiolaria in
surface sédiments of the North Atlantic Océan.
Aîicropaleontidog\> 17; 434-457.
Cordon W. A. 1973. — Marine iife and océan surface
currents in the Cretaceous. Journal of Geology 81:
269-284.
748
GEODIVERSUAS • 1999 • 21 (4)
Late Cretaceous radiolarian biogeography
Haeckel E. 18H7. — Report on the Radiolaria collec-
tcd by H.M.S. Challenger rhe yeurs 1873-
1876. Report on the Scienttfic Results ofthe Voyage of
the H.M.S. Challenger, Zaolugy 18» clxxxviii +
1803 p.
Hollis C. J 1997- — Crenieeous-Palcocene Radiolaria
from eastern Marlborough, New Zealand. Imtinite of
Geobgical & Nuclettr Sciences wonograph 17». 152 p.
Ishii A. & Takahashi O. 1993. — Accrction com¬
plexes and reJated lïJrearc basins in rhc Cretaceous
of central Japan, with spécial référencé to fhe conri-
nuity of accrction tecronism æid associated meta-
morphism. Palaeogeography, Palaeoclimatologyy
Palaeoecobg^ 105' 111-124.
Ishii A-, Takahashi O. &: Hayaslii N. 1990. —
Geology of the Kawakàuii'.^udama area, western
part of the Kanto Mnuntains, central Japan.
Bulletin of Tokyo Gakugei University, Section 4, 42:
17Ti81 fin Japancsc wîtli Ltiglish abstract].
Iwata K. & Tajika J. 1986. — Late Cretaceous radio-
Ijrian.s of the Yubctsu Group, Tokoro Belc, north-
east Hokkaido. Journal of the Faculty of Science,
Hokkaielo University. Séries IV'. 21: 619-644.
— 1989. — Jurassic and Cretaceous radiolarians Irom
ilic pre-Tcriiary sysrem in the Hidaka Bch.
Maruseppu région, norrheast Hokkaido. Jourtml of
the Faculty uf Science. Hokkaido University,
Séries IV, 22: 453-466.
Ling H. Y. 1991. — Cretaceous (Maescricheian)
radiolarians: Leg 114: 317-324. in Ciesielski P. V.,
KristoRersen Y. et al. (eds), Proceedings ofthe Océan
Drilling Pjogfifm, Scientifre Results 114. College
Station, TX (Océan Drillittg Prograrn),
Ling H. Y. & La^a^us D. B. 1990. — Cretaceous
radiolaria fron*» the Weddell Sea: Leg ! (3 of rhe
Océan Drilllng Prograrn: 353-363, in Barker P. F.,
Kennett ]. P. er al. (eds). Proceedings ofthe Océan
Drzlling Prcgi'ttm. Scientifte Results 113. College
Station, TK (Occan L>riihng Prograrn).
Makino Y. 1973. — Siratigraphical and scdimentolo-
gical studies of che ivobotoke Group, Kawanto
Mountainlund, central Journal of the
Geological Society of Japan 79: 299-308 [in Japanese
wirh Etiglish abstract].
Moore T. C. 1973. — Radiolaria from Leg 17 of rhc
Deep Sea Drilling Project: 797-869. /« Wincerer
E. L., Ewing j. et al. (eds), initial Reports of the
Deep Sea Drilling Project 17. LL S. Governmenr
Printing OfFice, Washington L"). C.
Muramatsu l'. 1986. — Late Cretaceous-earliesr
Paleogene? radiolarians from the Shirnanro Rcit
(Nortnern Belt) in the sotithern part of rhe Akaîshi
Mountains, central Japan. Jourtuzl of the Geological
Society ofJapiVt 92: 311-313 (in Japanese].
Obara I. & Maisukawa M. 1988. — Sonie Bored or
Subboreal Ammonites in che japanese Barremian:
469-476, in Wiedmarin J. &r Kullmann J. (eds),
Céphalopode — Présent and Past. Schweizerbart’sche
Verlagsbuchhandlung, Stuttgart.
Payton C. E. (ed.) 1977. — Seismic Straiigraphy -
applications to hydrocarbon exploration. American
Association of Petroleum Geologists. Memoir 26,
516 p.
Pessagno E. A, 1969. — Upper Cretaceous
Stratigraphy of the Western Gulf Goasc Area of
Mexico, Texas, and Arkansas. Geological Society of
America, Aiemoir 111_, 139 p.
— 1976. — RadioLtrian zonation and stratigraphy of
rhc UppcT Cnrraccüu.s portion of rhc Grcat V.illcy
sequence. California Coast Ranges. Micro^
pafeontology, Spécial Publication 2: 1-95-
Pessagno E. A. & Blome C. D, 1986. — Faunal affi-
nities and tectonogenesis of Mesomic rocks in the
Blue Mounrains province of easrern Oregon and
western Idaho, ttl Vallier T. L. & Broolcs H. C.
(eds), Geology of the Blite Moiintains région of
Oregon. Idaho and Washington. U. S. Geological
Survey PivfksionatPaper 1435: 65-78.
Petrushevskaya M. G. 1971. — Riidiolaria in the
plankton and reeem sédiments from rhc Indtan
Océan and Antarctic: 319-329, in Funnell B. M. &
Riedel W. R. (eds), The Micropalneontology of
Oieam. Cambridge L^niv-^ersity Press, Cambridge.
Robetts L. N. R. & Kirschbautn M. A. 1995. —
Pdleogeography of the Late Cretaceous of the west¬
ern interior of middle Norch America — coal
di.striburion and sedimeiu accumulation. U. S,
Gcologjcal Sunuy l*roJhsional Paper 1561. 115p.
Sakai A. 1987. — Geology of the Inukdichi District.
Wirh Geological Slieet Map at 1:50,000.
Geological Survey of Japan, ’Jsukuba, 75 p. [in
Japanese with English abstract]
Sanrilippo A. & Riedel W. R. 1985. — Cretaceous
radiolaria: 573-630. in Bolli H. M., Saunders |. B.,
and Perch-Nielsen K. (eds), Plankton Stratigraphy.
Cambridge University Press, Cambridge.
Smith A. G-, Smith D. G.. & Funnell B. M. 1994. —
Atlas of Mesozoic and Cenozoic coastlines.
Cambridge University Press. Cambridge, 99 p.
Suyari K. 1986. — Restudy of the Northern
Shitnanto Subbelt in Eastern Shikoku. /onw// of
Science College of General Education, University rj
Tokushima 19; 45-54 [in Japane-se with English
abstract ).
Suyari K. 6i Hashirnoto H. 1985. —A radiolarian
assemblage from the I/umi Group of eastern
Shikoku. Journal of Science College oj^ General
Education, Unhenity of Tokushima 18: 103-127 [in
japanese with English abstract].
Pakaltashi O. & Ishii A. 1993. — Paleo-oceanic en\d-
ronment in rhe Late Cretaceous time, infeired from
radiolarian fauna of Amphipyndax tylotus zone, in
Sakaj T. & Aita Y. (edsk Proceedings of the Fords
Radiolarian Symposium, News of Osaka
Micropaleontologists, Spécial Volume 8: 261-270 [in
Japanese wirh English abstract].
Takahashi O., Hayashi N. & IshÜ A, 1989. —
Radiolarian fossils firom the Masutomi Group, sou-
GEODIVERSITAS • 1999 • 21 (4)
749
Takahashi O.
thwestern part of the Kanto Mountains, central
Japan, and their significance. Journal of the
Geological Society of Japan 95: 953-955 [in
Japanese].
Taketani Y. 1982. — Cretaceous radiolarian biostrati-
graphy of the Urakawa and Obira areas, Hokkaido.
Science Reports of the Tohoku University, 2nd Sériés
(Geology) 52: 1-76.
Vishnevskaya V. S. 1986. — Middie to Late Creta¬
ceous radiolarian zonation of the Bering région,
U.S.S.R. Marine Micropaleontology 11: 139-149.
Watanabe K. 1958. — Shoya Formation: 95-96 [in
Japanese], in Fujimoto H. (ed.), Géologie History of
the Minami-saku-gun District. Minami-saku
Kyoiku-kai, Nagano.
Yamasaki T. 1987. — Radiolarian assemblages of the
Izumi Group in Shikoku and western Awaji Island,
Southwest Japan. Journal of the Geological Society of
Japan 93: 403-417 [in Japanese with English abs¬
tract] .
Submitted for publication on 29 January 1998;
accepted on 24 July 1998.
APPENDIX
Sample localities
Figured specimens will be deposited in the Tokyo Gakugei University. The following sample num-
bers, Sh and St, refer to samples from the Shoya Formation and the Kobotoke Group, respectively.
For St-1, see Loc. 8 in Takahashi et al. 1989; Loc. 12 in Ishii et al. 1990.
Samples Géologie setting
localities
Sh-1
Sh-2
Sh-3
Sh-4
Sh-5
St-1
St-2
Siliceous dark gray mudstone
Siliceous dark gray mudstone
Siliceous dark gray mudstone
Siliceous dark gray mudstone
Siliceous dark gray mudstone
Siliceous dark gray mudstone
Siliceous black mudstone
36°13’07”N,
36°13’07”N. 138°35’04”E
36*^13’07”N, 138“35’04”E
36M2’5rN. 138"35’04”E
36°12’5rN, 138°35’04”E
35°53’39”N, 138^3riO”E
35°46’06”N, 138°54’33”E
750
GEODIVERSiTAS • 1999 • 21 (4)
Permian Albaillellaria (Radiolaria)
from a limestone lens at the Arrow Rocks
in the Waipapa Terrane (Northland, New Zealand)
Atsushi TAKEMURA & Tami MORIMOTO
Geoscience Institute, Hyogo University of Teacher Education,
Yashiro-cho, Kato-gun, Hyogo 673-14 (Japan)
takemura@sci.hyogo-u.ac.jp
Yoshiaki AITA
Department of Geology, Faculty of Agriculture, Utsunomiya University,
Utsunomiya 321 (Japan)
Rie S. HORI & Yasushi HIGUCHI
Department of Earth Sciences, Faculty of Science, Ehime University,
Matsuyama 790-77 (Japan)
Bernhard K. SPÔRLI
Department of Geology, University of Auckland.
Auckland (New Zealand)
Hamish J. CAMPBELL
Institute of Geological and Nuclear Sciences,
Lower Hutt (New Zealand)
Kazuto KODAMA
Department of Geology, Faculty of Science. Kochi University.
Kochi 780 (Japan)
Toyosaburo SAKAI
Department of Geology, Faculty of Agriculture, Utsunomiya University,
Utsunomiya 321 (Japan)
Takemura A., Morimoto T., Aita Y,, Hori R. S., Higuchi Y., Spôrli B. K., Campbell H. J.,
Kodama K. & Sakai T. 1999 — Permian Albaillellaria (Radiolaria) from a limestone lens at
the Arrow Rocks in the Waipapa Terrane (Northland, New Zealand), in De Wever P. &
Caulet J.-P. (eds), InterRad VIII, Pahs/Bierville 8-13 septembre 1997, Geodiversiias2^ (4) :
751-765.
GEODIVERSITAS • 1999 • 21 (4)
751
Takemura A., Morimoto T., Aita Y., Hori R. S., Higuchi Y., Spôrli B. K., Campbell H. J., Kodama K. & Sakai T.
KEYWORDS
Radiolaria,
Albailltllaria,
PermiJIi.
New Zealand,
Waip^a Tcrmnc.
Follkucidlui,
Arrow Rocks,
new spcck*^
ABSTRACT
Well-preserved Permian radiolarians are présent in a limestone lens at Arrow
Rocks in the Wliangaroa Area within Waipapa Terrane, New Zealand. This
fauna conrains eighr species of albaillellarians» six species cl genus
Follkucullus and wo of Pseudoalbaillella, and is Lare Middle lo Early Late
Permian in âge. In the Whangaraa Area, bAsalti» are probably as old as
Middle Permian. whilc cherts arc mosily Latc Permian. AJthough the radio-
larian launa frum Arrow Rocks cuinains twn new species oFFoUicucuUus, this
fauna can nevcnheless bc assigncd a low-Iatitude origin. Two new species»
Folliamillus iphuiricfd and Follkucullus luhangaronetisis, arc described.
MOTS CLÉS
Radiolaire,
Ibaillellarides.
Permien,
Nouvelle Zélande,
Waip^a Tcnane,
Follicticiillm^
Arrow Rocks,
nouvelles espèces.
RESUMJÉ
Albaillellaridés (radiolaires) permiens d'un banc calcaire à Arrow Rocks dans la
Waipapa Terrane (Nouvelle Zélande septentrionale).
Des radiolaires permiens bien conservés ont été trouvés dans un banc calcaire
a Arrow Rock.s dans la région de Whangaroa de la Waipapa Terrane,
Nouvelle Zélande. Certe faune conrienr huir espèces d'albaillcilaridés, six
espèces du genre FolUcucitllns et deux de Fseudoalhuillclliiy et est d'âge
Permien moyen à début Permien supérieur. Dans b région de Whangaroa,
les basaltes sont probablement aussi anciens que le Permien moyen, alors que
le.s chens sont principalement Permien supérieur. Bien que la faune a ladio-
laircs à Arrow Rocks contiennent deux nouvelles espèces de F'ollicucullus,
cette faune peut néanmoins être considérée comme de basse latitude. Deux
nouvelles espèces, Follkucullus sphaericus et Follkucullus whangarodensis. sont
décrites.
INTRODUCTION
Our knowledge of Permian radiolarians has
significantly incrcascd since Oimiston
Babcock (1979) described genus Follicucullus
from Guadalupian scquence.s in West Texas.
After this pioneering research, taxononty and
biostratigrapliy ol Permian launa devejoped
rapidly in the Llnited States, Russia and Japan
(e.g., Holdsworth dé Jones 1980^ Ishiga & Inioto
1980; Takemura & Nakaseko 1981; Ishigâ cl al.
1982a, b; Nazarov & Ormiston 1986; Ishiga
1986). Most of this Work was. however, doue in
the northern hemisphere, and most Permian
radiolarians recorded from the Southern hémis¬
phère are from New Zealand.
Permian radiolarians are known froni only a fcw
fossil local itie.S in New Zealand, one of which is
Red Rocks near Wellington m Torlesse Terrane
(Fig. 1), where Grapes et al. (1990) reported
Middle Permian radiolarians from bedded chert.
The other localities are concenrrated within the
Whangaroa Area in the northern Waipapa
Terrane. Révérai radiolârian locâlines of bedded
chert and limestone hâve been reported from this
area, géologie âge of which ranges fa>m Middle
to Late Permian (Caridroit & Ferrière 1988;
Adachi 1988; Takemura et ai 1998).
We have made geological and biostratigraphic
surveys in the Whangaroa Area ( 1995-1996), and
liaVc alrcady reported the occurrence of Permian
and Triassic radiolarians from this area. At Arrow
Rocks, an almost conçinuous section from basait
with limestone, bedded chert to siliceous mudsto-
ne is exposed, Well-preserved radiolarians are |)re-
senc in a lirnesrone lens within spiliric basait, the
âge of which is Middle to Late Permian
(Takemura et al. 1998). This fauna includes seve-
ral albaillellarian species of the généra
Follicucîillus Ormiston &; Babcock, 1979 and a
752
GEODIVERSITAS • 1999 • 21 (4)
Permian Radiolaria from Arrow Rocks, New Zealand
175°E
Fig. 1. — Index map of the North Island, New Zealand, showing the distribution of terranes (Aita & Spôrli 1992) and the location of
the Whangaroa Area, as well as Red Rock near Wellington.
GEODIVERSITAS • 1999 • 21 (4)
753
Takemura A., Morimoto T., Aita Y., Hori R. S., Higuchi Y., Spôrli B. K., Campbell H. J., Kodama K. & Sakai T.
few of Pseudoalbaillella Holdsworth àc Jones,
1980. We describe albaillellarians of this fauna,
including two newspecies ofgenus Follicucullus.
GEOLOGICAL SETTING, STRATIGRAPHY
AND METHOD
Basement of New Zcaland North Island consists
mostly of five lirJiostratigraphic units, Murihiku,
Dun Mountain, Waipapa, Torlesse and Mata
River Terranes {Aita & Spôrli 1992; Fig. 1).
These terranes becomes younger in geological
âge from west to cast, and the lattcr three,
Waipapa. TorJesse and Mata River, aie Mesozoic
accretionar)^ complexes.
The Whangaroa Area (Figs 1. 2) is situated at
about 90 km northwest of Whangarci in
Northland. This area belongs to the northern
part of Waipapa Terrane, which is composed
mostly of terrigenous clastic rocks associated
with spilitic basait, chcrt and argillites.
Geological âge of the northern part of this terra¬
ne is Permian to Triassic, based on radiolarians
and fusulinids (Aita & Spôrli 1992; Takemura et
ai 1998).
The Waipapa Tcrranc rocks in the Wliangaroa
Area consists of massive to thick bcddcd sandsto-
ne (greywackc), spïlicic basale, bedded chcrt,
green siliccous mudstone (argillite) and liniesto-
ne lenses within basait (Fig, 2). Prior to this
study, more chan six locahnes of Permian fossils
were known from chert and limestone in this
area. Radiolarian fossils show Middle to Late
Permian âge from five locaiitics (Caridroit &
Ferrière 1988; Adachi 1988; Takemura et al.
1998). L.cvcn &: Granr-Mackie (1997) dcscribed
fusulinids from limesTonc Icnscs at Wherowhcro
Point (Fig. 2), the samc locality from which
Hornibrook (1951) reported fusulinids. Thcy
concluded that rhe hisulinid fauna belonged to
Yabeina-Lepidolina zone and thcrcforc is part of
the Midian Stage of Tcthyan Rcalm. They al.so
mentioncd the paleogeographic relationship of
this fauna with casteni Asia. At Mahinepua
Peninsula about 5 km cast of the Wherowhcro
Point, very wcll-preserved Ttiassic radiolarians
occur in the phosphatic nodules within green
siliceous mudstone (Aita & Bragin 1999).
rhe material studied in this p;tper was obrained
at Arrow Rocks (Oruatemanu Island), a small
island located wirhin Whangaroa Bay, north of
Whangaroa Harbour (Fig, 2). The Grid
Référencé for Arrow Rocks, based on the New
Zealand 1:50,000 topographie map, îs P04 &
Q04/837895 corresponding to latitude
34'^59.7Ti and longitude I73°46.8^E. On this
small island, we hâve observed a 135 m thick
seemingly continuous section composed of spili¬
tic basait witb limestone layers, bedded chert,
and red, maroon and green siliceous mudstones.
Takemura et al. (1998) made a preliminary
report on the lithostratigraphy of this scqucnce,
and divided it into cight lithological unirs
(Fig. 3). Ficld observation of lithologics and
thickness in these units in ascending order is as
the foUows:
— Unir 1: spilitic basait with limestone lenses,
31.5 m;
— Unit 2: bedded chert, 11 m;
— Unit 3: alternation of cbert and black shale,
1 m;
— Unit 4: red siliceous mudstone and red chert
with manganese-rich layers, 6.6 m;
— Unit 5; red siliccous mudstone with chin red
chert, 17.2 m;
— Unit 6: maroon chert and siliceous mudstone,
29.5 m;
— Unit 7. alternation of maroon and green sili¬
ceous mudstone, 11.2 m;
— finit 8: green siliceous mudstone with vitric
tuffs, 27 m.
Within this sequence, we observed no significant
faulting excepr between Units 2 and 3.
Boundaries bciwecn the units descrihed above
arc conformable and appear to represent cond-
nuoLLs déposition.
Takemura et ai (1998) report the occurrence of
Late Permian Radiolaria including AUniillella tri-
angularis Ishiga, Kiro âc Imoto, 1982 and
Hegleria sp. in a bedded chert sample (ARR-7)
within Unit 2. The horizon of ARR-7 lies about
10 m above that oi ARR-1 (Fig. 3). Triassic
radiolarians such as Pareyitacttnta (Dumitrica,
Archaeosemafitis (Dumitrica, 1978) and
forms belonging to genus Glomeropyle (Aita &
Bragin 1999) are présent in siliceous mudstones
within Units 6 and 8.
754
GEODIVERSITAS * 1999 • 21 (4)
Permian Radiolaria from Arrow Rocks, New Zealand
spititic basait chert
green sifioeous massive
shale sandstone
Fig. 2. — Pemiian and Triassic fossil localities in lhe Whangaroa Area. X. fossil localilies. Perntian radiolarians from limestone
and bedded chéri at Arrow Rocks (Takemura et af. 1998 and this study); 2. Permian radiolanans from bedded chert al Kairawaru
Bay {Caridroit & Ferrière 1988; Adachi 1988); 3. Permian radlolarians from limestone and chert at west of Mahinepua Peninsula
(Takemura et al. 1998); 4, Triassic radiolarians from phosphate nodules in green argillite at the Mahinepua Section (Alla & Bragtn
1999); 5. Permian fusulintds from limostones at Wherowhero Point (Hornibrook 1951; Leven & Grant-Mackie 1997).
The material treated in this study is a limestone
lens (ARR-1) wichin Unit 1. The unit includcs
four red, pale red or white limestone layers, 0.7
ro 2 m thiclc, intercalated wichin basalts, which
are usually green grey lo green coioured, massive
or showing pillow structure, or .sometimes are
fragmentai. ARR-1 is a purple grey coioured.
laminated limestone lens, situated at about 24 m
above the base horizon. This lens is intercalated
just below lhe uppermost red limestone laycr
within Unit l (24-26 m. Fig. 3).
ARR-1 coniains numerous radiolarian shells, but
they hâve been altcrcd bv CàCO^ so rhat we
obeained no or very few residues by extraction
using diluted hydrochloric, nitric or aceric acids.
As a resLilr nf this^ ir was decided to process the
sample using diluted hydrofluoric acid (HF, 1 to
3%) for about 20 hours. We successfully recove-
red residues inckiding radiolarians by chis pro-
cess, but the préservation was nor good enough
for détermination of spccics. The samc sample
was then again processed by diluted nitric acid
(HNO 3 , 1 to 2%) for up to 24 hours. After this
step, we were able ro obtain well-pre.scrved
radiolarian shells. Although otlier acids such as
hydrofluoric, hydrochloric or acetic acids were
tried lor the second step after HF, the best pré¬
servation was achieved by using nitric acid.
RAHI01.AR1AN FAUNA FROM ARROW
ROCKS AND GEOLOGIC AGE
OF BASALT-CHER'r SEQUENCE
IN THE WHANGAROA AREA
The limestone Ions sample (ARR-1) contains wclk
pre.ser\cd albaillellafian fauna. The fauna includcs
six spccies of genus Follicuçtdlm and cwo of genus
PseudoiübailUlh (Figs 4, 3). Ishiga (1986, 1991)
established Permian radiolarian zonation bascd on
die ranges of albaitlellarîans from mosfly bedded
chert seqtiences in Southwest lapan. His zonation
is applicable for the ARR-1 tauna, bccause many
albaillellarians from our sample were alrcady
included within Ishigas zonation.
Among these albalJlc!lartan.s wiih conicaJ shells
investigated by Ishiga (1986, 1991), Pseudo*
albailleUa fuiifornn^ (Holdsworth 6c Joncs,
1980), P aft. longicomis of Ishiga et aL (I982a)>
FoHicHcullus scholasticus Ormiston âc Babcock,
1979 and F. porreetns Rudenko, 1984 (= E jûpo~
nicm of Ishiga 1991) arc présent in our sample
ARR'l. Because both FoUicucidlus monacanthm
Ishiga & Imoto, J 982 (Ishiga et al. 1982b) and
spccics ot genus NeoalbaiUella Takemura 6c
Nakaseko, 1981 are absent in thi.s .sample, wc
correlate this fauna with Follicucullus scholasticus
zone of Ishiga (1986).
GEODIVERSITAS • 1999 • 21 (4)
755
Takemura A., Morimoto T., Aita Y., Hori R. S., Higuchi Y., Spôrli B. K., Campbell H. J., Kodama K. & Sakai T.
Unit 8
Unit 7
Unit 6
Unit 5
A
B
C
D
E
F
G
H
Unit 4
Unit 2
Unit 3
-^ARR-7
-^ARR-1
Unit 1
Fig. 3. — Summarized géologie column of the Arrow Rocks. A, fold zone; B, siliceous mudstone; C, bedded siliceous mudstone and
chert; D, alternation of black shale and chert; E, bedded chéri; F, tuff; G, limestone; H, spllitic basait. ARR-1 and ARR-7 are the hori¬
zons where Permian radiolarians occurred (Takemura étal. 1998).
756
GEODIVERSITAS • 1999 • 21 (4)
Permian Radiolaria from Arrow Rocks, New Zealand
Following Ishigas zonation, rhe uppec limits of
the ranges of Psetidodlbaillella fitsiformis and
P. aff longivornîs are wichin Follicucullus mona-
canthus zone or lowcr. However, occurrences of
thèse cwo spccics in ARR-l are fe\v and they are
usually less weU preserved than Folïmtadlm. Ir is
possible that these two species might be rewor-
ked, or that the ranges might be longer than thaï
suggested by Ishig^s (1986) zonation.
The fauna in ARR-l can bcalso correlatcd to the
Follicucullus japonicus zone of Ishiga (1991)
because of the co-occurrencc of F. porrectus {-
F. japonicus) and F. scholasticus^ and because of
the absence uf F. rnonacanthus^ F. charveti
Caridroit ^ De Wever, 1984, F. hipartitus
Caridroit ôc r>e Wever, 1984 and NeoalbaiUdla.
According to the corrélation ol radiolarian zona-
lion wiili fusulinid and conodont zonations by
Ishiga (1986, 1990, 1991), the géologie âge of
Follicucullus scholasficus zone and F japonicus
zone is in the vicinity of rhe bonndar)' berw-een
Middle and Lace IVrniian.
Résides thcsc species, Kozur (1993) described
Cariver dorsoconvexus (herein treated as a species
of the genus Folliciiadlt4s) from Upper Permian
sequencc in -Sicily, Jraly, F sphaeriais n. sp. was
figured by Küwahara (1997) as Follicucullus sp.
A, which is présent in bedded chen of GA sec¬
tion in GujO'Hachiman Area, central Japan
These samples are wichin Neoalbatllella optima
and N. ornithoformis zones, indicating a l.are
Permian âge. The ranges of dicse two species,
Follicuadhis darsoconvexiis and F. sphaericus ii. sp.,
however, ,are not ctarified yet. Phcrelore, we
regard the géologie âge ol our samplc ARR-I as
Late Middle or EatJy Latc Permian.
lakcmiira et al. (1998) reporred Permian radto-
larians from a üniestone Icns (MAH-5) ai the
west end ol Mahinepua Pcninsiila (Fig. 2).
MAH-5 corUiiins Follicucullus porrectus Riidcnko
and Pseudoidhaillella (?) sp. T'hcy correlatcd this
samplc with ihc F monacantbiis zone ol Ishiga
(1986), and with the F japoniais zone of Ishiga
(1991), bcoiusc ol the absence ol other species
ol Follicucullus. The géologie âge ol this sample
is aiso neaj- the Middle/Late Permian boundary.
Rcccmly l.even & Granc-Mackic (1997) descri-
bed fusulinids from some limestone lenses within
spilitic basait at Wherowhero Point (Fig. 2).
These fusulinids Include Lepid^/litm shiramensis
Ozawa, 1925, Ncoschwagerina margaritue
Depmt, 1913 and Yabtina glvLma (Yabc. 1906),
and the fauna was correlatcd with the Yabeina-
Lepidoliiia zone. Leven & Grant-Mackic (1997)
regard the géologie âge of these fusulinids as
Midian, and mosi samples probably as Early
Midian. The Midian stage corresponds to the
Capitanian and late Wordian in Norch America
(Leven 6c Grant-Mackie, 1997) and Ishiga
(1990) correlatcd the fusulinid Yabcina-
Lcpidolina zone with chc radiolarian FolhcucuUus
numacanrhus and F. scholasficus zones.
Thus, the chrcc llmcstonc samples within spilitic
ba.salts from uorchern New Zealand show similar
géologie âges. Bedded chcris arc sometimes asso-
ciated with these basalts and arc characicristic of
océan floor sedimentary scquciices. indced, at
Arrow Rocks, bedded cherts comformably overlie
spilitic basait (Fig. 3). The âges of these cherts
are reporred Irnm rhree localitie.s in the
Whangaroj Area (Caridroit &C Ferrière 1988;
Adachi 1988; Takernura et al. 1998) to bc about
Lare Permian. Thcrelore, the âge of océan Iloor
sequencc represented by basait and cherr in the
Whangaroa Area is Middle to Late Permian.
The radiolarian fauna from Arrow Rocks
contains two new species oï Folltcncnllu^y
R sphaericus n. sp. and F. whangaroaensis n. sp.
The former was already figured by Kuwahara
(1997) from Japan, but the larier lias not hecn
reporied yei. These two species are cotnmon élé¬
ments within thi.s fauna, and they may reflecl a
significant faunal diflcrcnce in albaillcllarian dis¬
tribution between New Zealand and northern
hémisphère rcgion.s.
Leven &L Grani-Mackie (1997), however, aIso
maintained that the lusulinid launa Itom
Wherowhero Point showed a clear affînity with
those in the castern Paleotethys and Panthalassa
région, and that Üicse limestone blocics had been
moved from the original site of déposition.
Becau.se the radiolarian-beai ing limestones which
wc describe herein show similar géologie âge as
these fusulinid lime.srones, and because they ail
oceuf within a restricted area, the radiolarian
fauna from these samples musi originare from
near the région where the fusulinids were deposi-
ted. Therefore, the radiolarian fauna from Arrow
GEODIVERSITAS • 1999 • 21 (4)
757
Takemura A., Morimoto T., Aita Y., Hori R. S., Higuchi Y., Spôrli B. K., Campbell H. J., Kodama K. & Sakai T.
Rocks originated in a low-latitude area of Middle
to Late Permian timc.
SYSTEMATIC DESCRIPTION
The following description was madc by rhe first
author, Takemura A, The type specimens are
deposited ar Hyogo University of Teacher
Education.
Subclass RADIOLARIA Müllcr^ 1838
Order Poi.YCYS'I lNA Ehrenberg, 1838
miend, Riedel, 1967
Suborder ALBAILLELLARIA Dcflandre, 1953
eintntd. Holdswonh, 1969
Family Ai^BAILLELLIDAE Deflandre, 1952
emend. Holdswonh, 1977
Remarks
Cheng (1986) classified Albaillellaria Into two
groups, Albaillellacea and Eoilicucullacea, based
on rhe presence of a cross-bar, Ehis criterion is,
however, applicable only for verv well-pre.served
specimens, and we cannot observe such fragile
parts in most Permian samples.
Kozur (1981, 1993) and Kozur Mostlcr
(1989) described many généra for Permian
albaillellarians with conical shells. His classifica¬
tion seems to be so minute that sornetimes we
cannot make genenc assigtiment. In this paper,
the first author thorefore adopis four généra for
Permian albaillellarians, Albaillella Dcflandre,
1952, Psiudücilbctilhllü l loldsworth & Jones,
1980, F(dlkui'u/ls4s Oïm\stvn & Babcock, 1979,
and NeaaibailLUa Takemura & Nakaücko, 1981,
same as Ishiga & Imoto (1980), Ishiga (1982)
and Ishiga et al. (1982a, b).
Genus Folliciicullus
Ormiston Ôd Babcock, 1979
Foliicucullus Onvàsxon &r Babcock, 1979: 332.
Kozur Mostler, 1989: 181-182.
Cariver Kozur, 1993: 108-109.
LadsusY^oaxi, 1993: 109.
Type SPECIES. — Follicucullus ventricostis Ormiston &
Babcock, 1979.
Rkmarks
Mosi Permian taxonomie works followed rhe ori¬
ginal définition of Genus Follicucullus made by
Ormiston &: Babcock (1979). Only Kozur &
Mostler (1989) and Kozur (1993) divided ihis
groupv with descriptions of three new' généra.
However, rheir divusion are so minute thaï we
cannot use rhem to assign a genus ro poorly pre-
served specimens. Tberefore, for this paper, the
autlroi regards rhcwsc thrcc gênera as junior syno-
nyms of the genus Follicucullus.
The author generally follows ihe spécifie division
of Follicucidlus csrablishcd by Ishiga (1991), who
lumped forms of this genus into six specics from
Permian sédiments in Japan. *l'he>' are F mona-
canthus Uhiga Imoro, 1982 (Ishiga et al.
1982b), F. ventricosus Ormiston Babcock,
1979, F. charveîi Caridroit De Weven. 1984,
F. scholasticnc Oïxy\hxon ôc Babcock, 1979,
F/fometus Rudenko, 1984 (= F. japonicus Ishiga,
1991) and F. bipartitus Caridroit &: De Wever,
1984. Other than these forms, three species
A darsocortvexus (Kozur, 1993), F. sphaericus
sp. and R whangaroaensis n. sp. were distingui-
shed in ihe sample ARR-1.
Follicuculltu scholasticus
Ormiston & Babcock, 1979
(Fig. 4A, R)
Follicucullus scholasticus Ormiston & Babcock, 1979;
333-334, pJ. l.figs 1-5.
J'ollicucHlius scholasticus Ormiston & Babcock mor-
phorj'pe I - Lshiga 1985: 180, 181, pl. I, figs 15-21.
KEMARKS
Ishiga (1984) proposed rwo morphotypes wiihin
this species. F scholasticus morphotype I bas
simple conical shell without undulation and it
resembles forms described by Ormiston &
Babcock (1979) under the name of this species
(Ishiga 1985). In this paper, ihc author follows
Ishigas taxonomy and F. scholasticus is used for
forms with simple conical shell without undula¬
tion.
Kozur & Mostler (1989) proposed a new genus
hhigaconus for Follicucullus forms without shell
undulation. However, the distinction of this spe¬
cies and R porrectus is sornetimes difficult because
758
GEODIVERSITAS • 1999 • 21 (4)
Permian Radiolaria from Arrow Rocks, New Zealand
Fig. 4. — A, Follicucullus scholasticus Ormiston & Babcock, 1979; B, Follicucullus scholasticus Ormiston & Babcock, 1979;
C. Follicucullus porrectus Rudenko, 1984; D, Follicucullus porrectus Rudenko, 1984; E, Follicucullus ventricosus Ormiston &
Babcock, 1979; F, Follicucullus ventricosus Ormiston & Babcock, 1979; G, Follicucullus dorsoconvexus (Kozur, 1993);
H. Follicucullus dorsoconvexus {Kozur, 1993); I, Pseudoalballlella fusiformis (Holdsworth & Jones, 1980); J, Pseudoalbaillella aff.
longicornis Ishiga & Imoto, 1980. Scale bars: 100 pm.
GEODIVERSITAS • 1999 • 21 (4)
759
Takemura A., Morimoto T., Aita Y., Hori R. S., Higuchi Y., Spôrli B. K., Campbell H. J., Kodama K. & Sakai T.
the undulation or tripartite division of shells is
often unclear.
Follicucullus porrectus
Rudenko, 1984
(Fig. 4C, D)
Follicucttllus porrectus Rudenko» 1984 — Beljanskij,
Nikitina Rudenko 1984, pl. 8, figs3* 10.
Follicucullus scholasticus Ormisron & Babcock mor¬
photype Il - Ishiga 1984: 430, 431, pi. 1, figs 1-8.
Follicucullus japonicus Ishiga, 1991: 108-111, pl. 1,
figs 1-22, pl. 2, fig. I.
Remarks
In this paper, rhe author uses this species name
for intermédiare foems between F. scholasticus
and F. ventrkosus. Therc arc much variations ol
shell shapes within rhîs spccies trom samplc
ARR-l, saine as described by Ishiga (1991). Such
variation.s .seem ro be couünuous Irom simple
conical shapc of F. schoLmicus ro clearly tripartiie
F. ventricosus wirh inflaied sphcrical pseudo¬
thorax. Therefore, it is somerimcs difFicult to dis-
tinguish this species from die other cwo species.
FoUicuetMus tfe7itncosm
Ormiston & Babcock, 1979
(Fig. 4E, F)
Follicucullus iferirricosus Ormisron & Babcock, 1979:
332-333> pl. 1, figs 6-14.
RKMARK-S
Ishiga (1991) made a compari.son between
R porrectus (= F. japonicus) and F. ventricosus
under the dc.scripcion of the former species. He
used the widrh/lengrh ratio (W/1 ) of shells,
strongly inflated pseiidothorax and existence of
groove (sinus) on pseudorhorax as criteria to dis-
tinguish these two species
F ventricoms of the présent scudy lias strongly
inflated and subspherical pseudorhorax and a
distinctly tripartite conical shell. However, there
is usually no groove on rhe dorsal sidc of pseudo¬
thorax as seen in F. dorsoconvexus. The author
tcntativcly include tripartite forms without
grooves on subspherical pseudothorax wîthin
F ventricosus in iliis paper. Tlie dillerencc be¬
tween this species and F. porrectus is only the
degree of inflation of rhe pseudorhorax, and the
variation between rhem seems to be continuous.
Folltcuctillus dorsoconvexus
(Kozur, 1993)
(Fig. 4G, H)
Cariver dorsoconvexus Kozur, 1993: 109, pl. 1, figs 15-
17, 19.
Remahks
Ktjzur (1993) proposcd a new genus Cariver for
Follicucullus species wich curved shell and apertu-
re perpendicular to che shell axis. If we adopc
such minute generic divi.sioii, wc can assign
gênera only for well-prcscrved specirnens.
F dorsoconj^exus rcscmblcs to /: ventricosus. Both
two species hâve tripartite shell wich inflated
pseudoabdomen and sinus on ihe dorsal sidc of
the shell. The aperrurc is somecimes nor cxactly
perpendicular to the shell axis, because the dorsal
side of the shell wall becomes shorter (Fig. 4G).
Follicucullus sphaericus
Takemura, n. sp.
(Figs 5A-F, G)
Follicucullus sp. A. — Kuwahara 1997, pl. 2, fig. 8.
Follicucullus (?) sp. - Takemura et ai 1998, pl. 1,
fig. 13.
Types. — Holotypc HUTE-R-4024 (Fig. 5A), para-
types HUTE-R-4()25 (Fig. ^B) and HUTE-R-4026
(Fig. 5D).
Etymoi.OCY. — The .species name was derived from
the characteristic .shapc of this species.
MF.ASUKEMFNTS. — Lcngth of shell, 260-350 pm;
iength of upper conical part, 120-180 pm; widch of
shell, 160-230 pm; width of the base of upper conical
part> 50-110 pmrmeasured in 28 spécimens.
De^scuiimion
Imperforate and smooth shell composed of two
parts, upper conical part and lower part with
flattened hcmi,spherical shape. The upper conical
part slcndcr, and straight or .sometimc.s slightly
curved dorsally. The lowcr portion of tins conc
olten slightly inflated. The inflated and curved
lower part large with smooth surface and
760
GEODIVERSITAS • 1999 • 21 (4)
Permian Radiolaria from Arrow Rocks, New Zealand
Fig. 5. — A, Follicucullus sphaericus n. sp , right laleral view, holotype (HUTE-R-4024): B, Follicucullus sphaericus n. sp.. left latéral
view, paratype (HUTE-R-4025): C, Follicucullus sphaericus n. sp., a broken specimen showing the inner surface of the intlated lower
part, a hook-shaped Irace of the Inner wall can be observed, D. Follicucullus sphaericus n. sp., right latéral view, paratype (HUTE-R-
4026); E, F, Follicucullus sphaericus n. sp.. apertural view of parily broken specimen, a tube-like ventral spine arises upward trom
the edge of bended wall; G, Follicucullus whar}garoaensis n. sp., right laleral view, holotype (HUTE-R-4027); H, Follicucullus whan-
garoaer)sis n. sp.. left latéral view, paratype {HUTE-R-4028); Follicucullus whangaroaensis n. sp., ventral view, paratype (HUTE-R-
4029). Scale bar; A. B, D, E. G-l. 100 pm; C. 83 pm; F, 20 pm.
GEODIVERSITAS • 1999 * 21 (4)
761
Takemura A., Morimoto T., Aita Y., Hori R. S., Higuchi Y., Spôrli B. K., Campbell H. J., Kodama K. & Sakai T.
Upper part
Lower part
Fig. 6. — Schematic diagram of FollicucuHus sphaericus n. sp. The inflated lower part of the Shell is so strongly curved that the aper-
ture opens upward. WIthin the inflated lower part, the Shell wall of ventral side is curved and tumed upward. Then, both dorsal and
ventral spines aiso extend upward.
showing a semicircular shape in latéral view. Two
apertures présent on the lower part. A large aper-
ture situated at the ventral side of the upper
conical part and opening upward. This large
aperture subelliptical in shape and tapering dis-
tally hom the upper part. One more small aper-
ture opening at the distal end of the shell in
welhpreserved specimens. This smalJ aperture
teardrop-shaped and opening loward the ventral
side of the shell, with srnall dorsal spine or flap
originating the lowet end of this aperture. Insidc
the shell wall of the inflated and curved lower
part, the ventral side of the shell wall of conical
part strongly curved and turned upward. Tube-
like ventral spine extending upward from the
center of the turned end of the wall.
Remarks
In the broken specimen (Fîg. 5C), the trace of
the shell wall could be observed on the inner sur¬
face of the lower inflated part of the shell. The
trace is smoothly continuous from the upper
conical part and somewhat inflated within the
lower part, which resembles the inflated pseudo-
thorax of F. porrcctus or F. ventricosus. Then, the
trace is curved -strongly and turned upward.
Frorn the turned end of this wall, cylindrical
tube-like spine is arises upwanl inside the shell
wall (Figs 5E, F, 6). This skeicton is homologous
wirh a ventral spine or flap of other FollicucuHus
spccies. A small dorsal flap aIso exists helow the
small aperture on the distal part of the lower
shell.
The upper conical part often shows slighr infla¬
tion on its lower portion similar to the pseudo-
thorax oi F porrectus or F. ventricostL^. Therefore,
the upper conical part of F. sphaericus n. sp. is
homologous either with the apical corn jlone or
with both apical cône and upper pseudothorax of
the other FollicucuHus species. The lower shell
762
GEODIVERSITAS • 1999 • 21 (4)
Permian Radiolaria from Arrow Rocks, New Zealand
shape of this new species was formed by the
strong bcnding and inflating of the pseudothorax
and pseudoabdomen of the other species like
F. porrecws or E dorsoconvexus.
R sphaericus n. sp. differs from ail the other spe¬
cies of Follicucidluî in its flattened hemispherical
and curved shell shapcv its aperture opening
upward, and boih ventral and dorsal flaps arising
upward. The characterisric shape of this species
resembles that of PscudonlbfliLlelLz bulhasa Lshiga
(Ishiga 1982: 335, pl. l, figs 8-13, 16, 17). Ihe
strongly intlated and curs^cd pseudoabdomen of
P. bidhosa is quite similar to the lower part of
F, sphaericus n. sp., except for a small flap of the
former species. F sphaericus n. sp. does not hâve
pseudothorax and wings observed in Pseudo-
alhaillella, P. bidhosa ranges from Laie Carboni-
ferous to Early Permian in âge, and there should
be no direct phylogcnetic relationship berween
these two species. /T sphaericus n. sp. should be
cvolvcd frorn the other Follicucullus species like
F porrectus or F. dorsoconvexus.
Follicucullus whangaroaensis
Takemura» n. sp.
(Fig. 5G-I)
Follicucullus — T-ak&mnx^ et ai 1998. pl. 1, fig. 14.
Types. — Holorvpe HUTE-R-4027 (Fig. 5G), para-
type HUTE-R-4028 (Fig. 5H) and HUTE-R-4029
(Fig. 51).
Etymology. — The species name is after Whangaroa
Area in Northland, New Zealand, where Arrow Rocks
is located.
Measurements. — Lcngth of sheil, 240-330 pm;
length of apical cône, 130-180 pm; width of shell, 70-
110 pm; width of the base of apical cône, 60-70 pm;
measured in 12 specimens.
Description
Impcrforate conical shell slightly curved ventral-
ly, and undulated at the lower part with two dis¬
tinct inflated rings. Apical cône wirh smooth
surface and with a length more than half of the
total shell. Apical cône slightly flattened laterallv
and curved ventrally. In some specimens, vague
ring-like inflation observed at the lowest part of
apical cône. The lower part of the shell distinctly
undulated in dorsal or ventral view. Two rings
inflared laterally berween apical cône and apertu-
ral région, with circular shape in transverse sec¬
tion. Distinct furrows existing berween the two
rings, and berween the lower ring and inflated
apertural région. In dorsal or ventral view, shell
distinctly undulated becau.se of ihe.se ring.s and
furrows. A vague furrow may dlvide apical cône
and the upper ring, ’Fhesc furrows not présent or
becoming weak at the dorsal and ventral sides of
this ring région. The outline of the shell not
undulated distinctly in latéral view. The aperru-
ral région, the Jowermost part of conical shell,
inflated like rings. Two small spiiics or flaps, dor¬
sal and ventral ones, arising obliquely downward.
Remarks
F ivhangaroaensis n. sp, differs from the other
species ol Follicucullus by its banded lower shell.
This kind of rings has never been observed in the
other FoUicucullus spedes. The author included
this new species wiihin genus Follicucullus becati-
se of the similârity of its shell .shape to other
Follicucullus^ sucii as F scholassicus or F. pofreetns.
The ring région of this species may correspond
with inflated pseudothorax of rhe other species.
Similar structure ta this undulated shell with
rings was observed in the pseudoabdomen of
Pseudoalbaillelld globosa Isliiga & linoio (Ishiga
et al. 1982b). P. globosa has cite ring and inflated
apertural région below the spherical pseudo¬
thorax with two wings. The author considers
that there is no direct phylogcnetic relationship
between thcsc two species.
Genus Pseudoalbaillella
Holdsworrh & Jones, 1980
Pseudoalbaillella Holdsworth & Jones, 1980:
284. - Ishiga, Kîto & Imoto !982b: 274, 275.
1‘YEE Si'ECIES. — Pseudoalbaillella scalprata
Holdsworth & Joncs, 1980.
Remarks
Ishiga & Imoto (1980), Ishiga (1982) and Ishiga
et al. (1982a, b) assigned this genus for Late
GEODIVERSITAS • 1999 • 21 (4)
763
Takemura A., Morimoto T., Aita Y., Hori R. S., Higuchi Y., Spôrli B. K., Campbell H. J., Kodama K. & Sakai T.
Paleozoic albaillellarian.s wirh conicaK usually
imperforate and tripartite shelU and with two
wings on thc inflated pseudoahdomen. The
aurhor follows thcir taxonomy of this genus.
Pseudoalbaillella fusiformis
(Holdsworth & Jones, 1980)
(Fig. 41)
Parafollîcucidlusfitstfonvis Holdsworth & Jones, 1980:
285, Figs D, E.
Pseudoalbtullella fusiformis (Holdsworth &
Jones) - Ishiga, Kiro & Imoto 1982b: 275, 276, pl. 4,
figs 10-12.
Remarks
Most specimens of this species exrracted from
ARR'l are more or less broken. The préservation
of this species seerns to be wor.se than thar of
Follicucullus.
Holdsworth &: Joncs (19S0)‘ dcscribed this spe¬
cies as ParafoUiaictillxis fusiformis and they regar-
ded thc existence of a ring-like prepseudo-
abdominal segment as a criterion ol lliis genus.
However, some spécimens irom ARR-1 hâve no
ring on their pseudoabdotnent
Pseudoalbaillella aff. longicomis
Ishiga & Imoto, 1980
(Fig. 4J)
Pseudoalbaillella sp. afF P. longicomis Ishiga &
Imoto - Ishiga, Kito & Imoto 1982a: 18, pl. 3,
fig. 11; 1982b: 275, pl. 2, Figs 1-7.
Remarks
Most specimens of this form are broken and
their préservation is usually poon The total shape
and size of this form b almost same as the upper
hall of P. fusiformis.
Ackno wledgemen ts
We thank Peter, Judith and Jonathan Hall of
Tauranga Bay Motel for their kind help to our
survey. We thank Drs Jean-Pierre Caulet and
Patrick De Wever for their great effort in organi-
zing InterRad VIIl Meeting at Paris and to edit
this volume. We also thank Dr Martial Caridroit
for reviewing our manuscript. This research was
supported by Monbusho grant-in-aid (No.
07041085) for rhe International Scientific
Research Program 1995-1996.
REFERENCES
Adachi M. 1988. — Study of Permian radiolarian-
bearing chéris from rhe Marhle Bay area, North
Island, New Zealand. Journal of Geograpby 97:
632-634 (in Japanesc].
Aiia Y. Bragin N. Yu. 1999. — Non-Tethyan
Tria.ssic Radiolaria from New Zealand and north-
eastern Siberia, in De Wever P. te Caulet J.-P.
(edsj, InterRad V'III, Parls/Bierville 8-13 septembre
1997 Gtodivtrsitas 21 (4) ; 503-526.
Aita Y. & Sporli R. K. 1992. — Tecronic and palco-
biogeographîc significance ol radiolarian microfau-
nas in the Permian to Mesozoït basement rrxks of
the North Island, New Zealand. Palaeogeography^
PidaencUmatology^ Palaeoecology 96’ 103-125.
Beljunskîj G. S., Nikitina A. P. & Rudenko V. S.
1984- — O Scbucharskoj Sviie Prinwîtia, iu Novye
Dannyt Po Ùetaljnoj Biu^tratigrafH Fanerozoja
adpilgo Vosioka. bVNTs AN SSSR: 43-57.
Caridroit M. De Wes^er P. 1984. — Description de
quelques nouvelles espèces de Follicucuflidae et
d’Entactlmidac (Radiolaires Polycysrines) du
J^etmian du Jjpon. Geobios 17 : 639-644.
Citidioii M. & Fcrricrc J. 1988- — Premières data¬
tions précises du Paléozoïque par radiolaires en
Nouvelle Zélande. Intérêts géologique et paléonto-
iogique Comptes rendus des séances dt P Académie des
Sciences. Paris 306 : 321-326.
(dieng Y,-N. 1986. — Taxonomie studies on Upper
Paleozoic Radiolaria. National Muséum of Natural
Science^ 1 aiwaru Spécial Publication, Taichung 1,
311 p,
Dcflandrc G. 1952. — Albaillella nov. gen.,
Radiolaire fo.s.silc du Caibonifcre de la Montagne
Noire. Comptes rendus des séances de l'Académie des
Sciences^ Paris 223 : 515-517.
— 1953. — Radiolaires fossiles: 389-436, in Praité de
Zoohgic. Volurtïc j. Grasse V. P., Paris.
Deprat J. 1913. — Etude des fusulinidés de C’hine et
d'Indochine et classification de.s calcaires
Mémoire). Les itisulinidés des calcaire carbonifé-
riens et Permiens du T’onkin. du Laos et du Nord-
An nam. Ale'matres du Service Géologique de
Plndochhie 11 : 1-76.
Diinritrioi P. 1978.— Triavssic PalacoscenidÜdae and
Enracriniidae from rhe Vicentinian Alps (Italy) and
Ea.stern Carpachums (Remania). Dari de seama ale
sedintelor, Institutul de géologie si geofizica, Bucresti
64: 39-54.
764
GEODIVERSITAS • 1999 • 21 (4)
Permian Radiolaria from Arrow Rocks, New Zealand
Ehrenberg C. G. 1838. — Über die Bildung der
Kreidefclscn und des Kltidemergds durch unsicht-
barc Organismen. Abhartdlungen der Konigîichen
Akademie der Wisseuschafiev zu Berlin, Jahre 1838:
59-147.
Grapes R H., Lanib S. H., Campbell H. J , .SporÜ
B. K. and Sînies J. E. 1990. — Ceology of rhe red
rocks-turbidite associatitm, Wellington peninsula,
New Zciland. New Zealand Journal of Geology and
Geophysia 53: 377-391.
Holdsworfh B. K. 1969. -- Nainurian Radiolaria of
the genu.s Ccr.^toikiseum from Staffotdshire and
Derbyshire. England. Mivropaleorîtology 15:
221-229.
— 1977. — PaJcozoic Radiolaria: Stratigraphie distri¬
bution in Atlantic bordcrlands, in Swain F M.
(ed.)> Stratigraphie micropaleoniology of Atlantic
basin and boraerlands, Deifelopntents in Palaeonto-
logy andStratigraphy, Elseviccé: J67-184.
lioldsworih B. K. & Joncs D. I,. 1980. —
PrcÜminary radiolarian zonation for Lait Devonian
through Permian iimc. Geohgy^: 281-285.
Hornibrook N. de B. 1951. — Permian fusulinid
foraminifcra frum the North Auckland Peninsula,
New Zcalarid Traniaetiâtu of îhe Roy^iL Society oj
Neiv Zealand 79: 319-321.
Ishiga H. 1982. — Late Carboniferous and Early
Permian radiolarians from the Tamba Belt,
Southwest Japan. Eartb Science (Chikyu Kagaku)
36: 333-339.
— 1984. — Follicucullus (Permian Radiolaria) from
Maizuru Group in Mai/uru Bch. Souihwc.st Japan.
Earth Silence (C'hikyu Kagaku) 38: 427-434.
— 1985. — Discover)M>f Permian radittJarians hom
Katsumi and Oi Formations along south of
Maizuru Belr. Southwest Japan and iis significance.
Earth Science (Chikvu Kagaku) 39: 175-185.
— 1986. — Late Carboniferous and Permian radiola¬
rian biosrrarigtaphy of Southwest Japan. Journal of
Geosciences, Osaka Ctry univer.uty 29: 89-100.
— 1990. — Paleozoic Radiolaiians, i?7 Ichikawa K. et
al. (eds), Pre-Cretaceous Terranes of Japan, ÎGCP:
Pre-Jurasstc Evolution of Eastern Asin, Osaka 224:
285-295,
— 1991, — Description of à new FoliicUctdlus spe-
cies from Souihwosr Japan. Menions of the Faculty
of Science, Shiniatie 25: 1Ü7-! 18.
Ishiga H. & Imoto N. 1986. — Some Permian
radiolarians in the J'amba District, Southwest
japan. Earth Science (Clukj'U Kagaku) 34: 333-345.
Ishiga H., Kiro T. & Imoto N. 1982a. — Lace
Permian radiolarian assemblages in rhe Tamba
District and an atljacein area, Southwest Japan.
Earth Science Kagaku) 36: 10-22.
— 1982b. — Middie Permian radiolarian assemblages
in rhe Tamba District and an adjacent area.
Southwest Japan. Earth Science (Chikyu Kagaku)
36: 272-281.
Kozur 11. 1981. — AJbaillellidca (Radiolaria) aus dem
Uiucrperm dos Vonirals. Geologisch-Palâontolo-
gische Mineilungm Innsbruck 10: 263-274.
— 1993. — Upper Permian Radiolarian.s fmin the
Sosio Vallev j'Vrca, Western Sicily (liaJy) and from
the Uppermost Lamjr L.irncstone of West Texas.
Jh. Geol B.^A. 136: 99-123.
Kozur H. & Mostlcr FL 1989. — Radiolarien und
Schw^ammskleren aus dem Cntetpcrm des
Vo rurals. Geologisch-PalHoutologische Minr/lungen
InnsbrttcF Sonderband 2: 147-275.
Kuwaluira K. 1997. — Llppcr Permian radiolarian
biostratigraphy: Abundance zones of Alhaillella.
News of Ùiakü Micropaleotmlo^sis, Spécial Volume
10; 55-75 (in Japanese wirh English anstract).
Leven E. Ja. & Grant-Mackio J. A. 1997. — Permian
fusulinid Foraminifera from Wherowhcro Point,
Orua Bay, Northland, New Zealand. Nnv Zealand
Journal ofGeology and Geophysics 40: 473-486.
Muller j. 1858. — Über die Thalassicollcn, Poly-
cystinen und Acanrhonietren des Mittelmceres.
Abhandfungcn der KHaii^lichen Akademie der
WJsscfbùhapen zu Berlin, ]Zt\rc: 1858: l-62_
Nazarov B. B. & Ormiston A. R. 1986. — Radiolaria
frorn the Laie Palcozoïe of the Southern Lhal.s,
LJSSRand West Texas, USA. Micrapaleontology 31:
1-54.
Ormiston A. R. &i Babcock !.. C. T.E'V. — Follicu-
cullns, new radiolarian genu.s from the Guadolupian
(Permian) Limar Limestone of the Delaware Basin.
Journal of Paleontology 53; 328-334.
Ozawa Y, 1925. — PaTconiological and straiigraphical
studios on tlic Permo-C3rbt>iiiroTous limestone of
Nagato. Pan 2, Paleonrolog)’ journal of the College
oJ Science, InipchaJ Ijnh'tr.siry of Tokyo 45: 1-90.
Riedel W. R. 1967. — Proruzoa (Subclass Radiolaria),
in Harland W. B, ei al. (cd.s), The Fossil Record, The
Geolagtcal Societ)' of London 291-298.
Takemura A.> Aita V-, Hori R. -S., fiiguclii Y., Sporli
K. B.» Campbell H., Kodairta K. & -Sakai T.
1998, — Prvlirninaty report on the lithosiraügfâ-
phy of the Arrow Rocks, and géologie âge of the
norrhern parr of rhe Waipapa Tertane. New
Zealand. News of Osaka AiicropaleontologistSy
Spécial Volume, 11; 47-57.
Takemura vV. bc Nakaseko K. 1981. — A new
Permian radiolarian genu.s from the Tamba Bclt,
Southwest Japan. Trarisacîiom and Praceedings of
the Palaeontoiogical Society of Japan, New Sériés
124: 208-214.
Yabe H. 1906, — A conrrihuiion ro rhe genus
Fusul/na, wîrh notes on Fusulina limestone from
Korea. Journal of the College of Science, Impérial
Univensity ofTokyo 21: 1-36.
Submittedfor pîiblication on 24 February 1998;
accepted on 1 July 1998.
GEODIVERSITAS • 1999 • 21 (4)
765
Remerciements/Acknowledgements
La Rédaction remercie vivement cous les rapporteurs, dont la liste est donnée ci-dessous, qui ont
accepté de donner temps et compétence pour révaluation des manuscrits publiés dans Geodiversitas
au cours de l'année 1999.
The Editors gratefully acknowledge the following referees who provided their tune and expertise in review-
ingpaperspuhlished in Geodiversitas during ihc year 1999.
AitchisonJ. C.
Hong Kong
Hong Kong
ISHIDA K.
Tokushima
Japon
AlbinoA. M.
Mar dcl Plata
Argentine
Janvier P.
Paris
France
Bl IF.CK A.
Lille
France
Kerp h.
Munster
Allemagne
Blome c. D.
Denver
USA
Kiessling W.
Erlangen
Allemagne
Bouchet P.
Paris
France
Kuhne W.
KicI
Allemagne
Capetta h.
Montpell ier
France
Laveinh. J.-P.
Lille
France
Cariürüit m.
Villeneuve d’A.
France
Lazarus d.
Berlin
Allemagne
Caron M.
Fribourg
Suisse
Long]. A.
Perth
Australia
CauletJ.-P.
Paris
France
Luo Z.
Pittsburg
USA
CiFELt.l R. L
Norman
USA
Marcüux j.
Paris
France
Cloutier R.
Lille
France
Masse J.-P.
Marseille
France
CORDEY F.
Villeurbanne
France
Matsuoka A.
Niigata
Japon
Cr.ASQUIN-SolE.\U s. Paris
France
Meueenkamp J.
Utrecht
Pays Bas
De Rickles A.
Paris
France
Montgfxard c.
Montpellier
France
Dhont A.
Bruxelles
Belgique
MurcheyB. L.
Menlo Park
USA
Dumitrica P.
Lausanne
Suisse
Nigrini c.
Alberta
Canada
Dupuis C.
Paris
France
Nikishin a.
Moscou
Russie
Eisenmann V.
Paris
France
Noble P. J.
Sacramento
USA
Esteras M.
Madrid
Espagne
Nolf d.
Bruxelles
Belgique
Faure M.
Orléans
France
Norman David B.
Cambridge
Royaume-U ni
Feinberg h.
Paris
France
O’Dogherty L
Puerto Real
Espagne
Feldmann R. m.
Kent
USA
ROBAZINSÏO' F.
Mons
Belgique
Floquet m.
Marseille
France
Sanfilippo a.
La Jolla
USA
Fox R. C.
Edmonton
Canada
Sereno P. C.
Chicago
USA
Gaetani m.
Milan
Italie
Solounias N.
New York
USA
Gale J.-C.
Strasbourg
France
SZYNDIAR Z.
Krakow
Pologne
Geraads D.
Paris
France
Urquhakt E.
London
Royaume-Uni
GumcherM. J.
Boston
USA
Vai G.-B.
Bologne
Italie
Gorican s.
Ljubljana
Slovénie
Van der Zwan P.
Amsterdam
Pays Bas
Guex J.
Lausanne
Suisse
ViSHNEVSKAYA V. S.
Moscou
Russie
Harris J. M.
Los Angeles
USA
Young g. c.
Canberra
Australie
GEODIVERSITAS • 1999 • 21 (4) ’jfpj
Instructions aux auteurs
La ligne éditoriale
Elle prendra en compte divers aspects de la
recherche en .Sciences de la Terre, en particulier
l’histoire et le comportenitm des bassins sedimen-
raires, la paléohiodivcrsité et les palcocnvironne-
menis. Un numéro de Geodivenîtas par an pourra
être consacre, cxceprionnellcment, au débat contra¬
dictoire sur un sujet d’actualité, ou sur un thème
donné et sous la responsabilité d’édiicur(s) invité(s).
Les manuscrits, dont le nombre de pages n'esr pas
limité a priori, devront suivre rigoureusement les
recommandations aux auteurs (voir ci-dessous) et
seront adressés à la revue :
Service des Publications Scientifiques du Muséum,
Geodiversitas,
S7 rue Cuvier,
l'-75231 Paris cedex 05
Tel: (33) OHU 79 34 38
fax ; (33) 01 40 79 38 58
e. mail : bulletin^^nmhn.tr
http://www.mnhn.fr/publication/
Les chapitres do systématique devront sc conformer
aux règles du Code îmermuiovul de Nonienclaiure
Zoalo^ique et du Code buvrriittiofiûl de Nomen-
daîure Botanicjue.
Tout manuscrit non conforme à ces instructions
sera retourné pour mise au point. Chaque manus¬
crit est évalue par deux rapporteurs, ou plus.
Infortnatiom générales
Soumettre un article pour publication dans
Geodiversitan suppose que celui-ci ou tour article
proche dans la même langue ou une autre langue,
n’ait pas été soumis dans une autre revue, même
dans Pattente de son acceplatioit. Les droits de
reproduction de l’article, y compris des illustra¬
tions, sont réservés à la revue. La reproduaion de
tout ou partie de Pardcle doit faire l^objct d'une
demande écrite préalable adressée à la rédaction.
Chaque manuscrit soumis (y compris les illustra¬
tions) doit être présenté en trois exemplaires (un
original et deux copies) au format A4, avec un
double interligne et des marges d’au moins 3 cm ;
chaque page sera numérotée. Les illustrations origi¬
nales seront jointes au manuscrit définitif, ainsi
qu’une disquette 3.5” de format Apple Macintosh
ou compatible IBM (traitement de texte Word de
préIcTencc), qui devra contenir également les
tableaux (Word. Excel, Deneba Canvas, Adobe
Jllustrator) et eventuellemeat les illustrations
(Adobe Illustrator, Photoshop, lormai .EPS,
300 ppp maximum, à la dimension de la revue et
en police Helvetica, corps 8 ou lü).
Le format
Les manuscrits, écrits en français ou en anglais, doi¬
vent être structurés comme suit :
— titre si possible bref ; un titre courant doit être
proposé ;
— traduction exacte du titre en anglais ;
— in>m(s) et prénüm(s) de(s) autcur(s) suivis de
leur(s) adresse{s) professionnellc(s), en indiquant si
possible le numéro de télécopie et Padrcssc électro¬
nique ;
— résumes écrits en français et en anglais (800
signes au maximum chacun), suivis des mots clés et
« key Word s » ;
— dans le texte courant, utiliser les italiques pour
tous les noms en latin : taxons de rangs générique
et spécifique (ex i Ccllaria Elhs & Sojander, 1780)
et iiL ;
— dans le texte courant, les réferences aux auteurs
seront en minuscules, ex. Dupont (2001), Llupont
(2001, 2002), (Dupont 2001 ; Durand 2002),
(Dupont & Durand 2003, 2005) Dupont (2001 :
1), Dupont (2001, fig. 2).
— dans le rexre courant, les références aux illustra¬
tions et aux tableaux de l’article seront présentées
ainsi : (Fig. 1), (Fig. 2A, D), (Fig. 2A-C), (Figs 3,
6), (Figs 3-5), (Tableau l) :
— les remerciements seront placés à la fm du texte,
avant les références bibliographiques ; ils meiuion-
ncroni les rapporteurs ;
— les références bibliographiques doivent suivre les
exemples donnés ci-dessous ;
— indiquer dans la marge remplacement des illus¬
trations dans le texte definitif ;
— donner les légendes des figures sur une feuille
séparée.
Les illtistratiom
Une attention particulière sera portée à la qualité et
la pertinence de l'illustration.
Les illustrations au trait doivent être réalisées à
l’encre de Chine ou être fournies en impression
GEODIVERSITAS • 1&99 • 21 (4)
769
Instructions aux auteurs
laser. Les photogriipliics, bien contrastées, seront
sur fond noir ou blanc. Elles pourront être regrou¬
pées, et dans ce cas, identifiées par une lettre en
capitales (A.» B, C...). Les planches photogra¬
phiques, placées dans le corps de Tarticle et non
regroupées à la fin de celui-ci, doivent être traitées ci
numérorées comme des figures, l.es illustrations
poLirroni être asseniblt^îs sur une largeur de colonne
(70 X 100 mm) ou sur toute la largeur de la justifi¬
cation (1^4 X 190 mm). La rédacrion encourage la
présentation de photographies avec tout ou partie
de leur interprétation par un ou des dessins au trait.
Aucune légende, ni lettrage ne sera placé sur les ori¬
ginaux. Ils figureront sur un calque joint avec
chaque ligure, la rédaclion se chargeant de les pla¬
cer. Chaque figure doit comporter une échelle
métrique, sans aucun coetficient multiplicareur. Les
tableaux et graphiques, à inclure dans le manuscrit,
doivent nécessaireincm pouvoir être imprimés sur
une page et rester lisibles après réduction éventuel¬
le. Des planches en couleur pourront être publiées
moyennant une participation financière de ou des
auteurs.
Références bibliographiques
Denison R. H. 1978. — Placodermi. in Schultze
H. P. (ed.), Handbook of Paleoichthyology,
Volume 2. Gustav Fischer, Stuttgart, 128 p.
Marshall C. R. 1987. — Lungfish: phylogeny and
parsimonv, tn Bemis W. È., Burggren W. W.
& Kemp N. E. (eds), The Biology and
Evolution ofLungfishes ,of Morphology
1: 151-162.
Schultze H. P. & Arsenault M. 1985. — The pan-
derichthyid fish ElpisTostcgr. a dose relative to
tetrapods? Paleontology 28: 293-309.
Schultze H. P. 1977a. — Tlie origin of the tetra-
pod limb within ilic rhipidistian fishes:
541-544, in Mccht M. K., Goody P. C. Ôc
Hecht B. G. (cds), Aiajor Patterm in Vertebrate
Evolution. Plénum Press, New York and
London.
Épreuves et tirés à part
Les épreuves seront adressées à Fauteur ou au pre¬
mier auteur (sauf indication contraire) et devront
être retournées corrigées sous huitaine. Les correc¬
tions, autres que celles impurahle.s à la rédaction ou
à Fimprinieur, seront à la charge des auteurs. Le(s)
auteur(s) recevront gracieusement vingt-cinq tirés à
prt, les tirés à part supplémenraires seront à com¬
mander sur un formulaire joint aux épreuves.
Scope of the Journal
Geodiversiitu publishes papers which concern varied
aspects ol Earth Sciences and particularly history of
sedimentary basins, palacobiodiver.sity and paleoen-
vironiïicnt. A complété issue of Geodiversitas inay
bc devoted to severaJ papers on a single topic under
the rcsponsabiliiy of guest editùf(6). Papers with a
sy.srcm.itic content .shotild follow ihc International
Code of Zoological Nomenclature and the Interna¬
tional Code ofBotantcal NomencLittnr. Manuscripts,
svithoLit limitation of the number ol pages, must
confonn strictly with ihc instructions to authors,
and will bc sent to the Editer:
Service des Publications Scientifiques du Muséum,
Geodi ver nias y
57 rue Ciiviec,
F-7523I Paris Cedex 05
Tel: (33)01 40 79 34 38
Fax: (33) 01 40 79 38 58
e. mail : bullctin@mnhn.fr
http://wwAV.mnhn.fr/publication/
General information
The submission of a manuscript to Gvodivmitas
implies that the paper, or a similar onc, is not being
offered for publication clscwhere. Copyright of
publishcd paper, including the illustrations,
becomes the ptoperty of ihc journal. Rcqucsis to
reproduce m.nerial froni Geodiversitas should be
addressed lo ihe editor
Manuscripr.s, wirh illusrrarions, must be submitted in
triplicatc (one original and rwo copies) in A4 format,
double spaced, with margins of at leasi 3 cm and ail
pages numbertxl. The original figures should bc sent
wirh the revised manuscnpr, as well as a 3.5" diskette
Apple Macintosh or IBM-compatlble (Word) for¬
mat, wdiich will alsü contain cables (Word, Excel,
Dcneba Canvas, Adobe Illustrator) and po.ssibly
figures (Adobe Illustrator, Photoshop, .EPS format,
300 dpi maximum, in the page size of rhe journal
and with Helvetica font in 8- or lO-point body).
Format
Papers are ro be written in simple and concise
French or English. They should bc organized as fol-
lows:
- a brief title in English;
- a tille in French (exact translation);
- a suggesred running head;
- name(s) of author(s), followed by their full pro-
fessjonal addressCes) and, if possible. Fax number
and e.mail;
- abstracts (in English and French) not exceeding
770
GEODIVERSITAS • 1999 • 21 (4)
Instructions aux auteurs
800 signs each, with key words and “mots clés”;
- text with italicized words for Latin: taxa of gene-
ric and spécifie ranks (e.g. Cellaria Ellis &
Solander, 1786) etaL\
- référencés to aurhors in main text should be pre-
sented, in lower case, as follows; Smith (2001),
Smith (2001, 2002), (Smith 2001), (Smith 2001;
Cary 2002), (Smith & Cary 2003, 2005), Smith
(2001: 1), Smith (2001, fig. 2);
- référencés to illustrations and tables should be
indicated as follows: (Fig. 1), (Fig. 2A, D), (Fig.
2A-C), (Figs 3. 6), (Figs 3-5), (Table 1);
- keep acknowledgements short and place them at
the end of the text before référencés; please do not
forget the revisers;
- give captions to illustrations on a separate sheet
and indicate their place in the margin.
Illustrations
The éditorial board will pay spécial attention to the
quality and relevancc of illustration.
Line drawings must be in Indian ink or high quality
laser printouts; high contrast phnrographs, placed on
white or black backgrounds, arc required. These can
be grouped into figures and identified by letters A,
B, C... Plates are not placed at the end of the article:
they will be considered as figures and numbered as
such. Arrange figures to lit onc or two columns
(70 X 190 mm or 144 x 190 mm). Associate inter¬
prétation of photograph with line drawing. No dia-
gram or table is lo exceed onc page. Letters, num-
bers, etc., for each figure, are to be indicated on an
accompanying overlay, not on the original figure
(line eut or half-tone). A scale bar is needed for
each figure (without magnification factor).
References
Denison R. H. 1978. — Placodermi, in Schultze
H. P. (ed.), Handbook of Paleoichthyology^
Volume 2. Gustav Fischer, Stuttgart, 128 p.
Marshall C. R. 1987. — Lungfish: phylogeny and
parsimony, in Bemis W. E., Burggren W. W.
& Kemp N. E. (eds), The Biology and
Evolution of Lungfishes, Journal of Morphology
1: 151-162.
Schultze H. P. & Arsenault M. 1985. — The pan-
derichthyid fish Elpistostege: a close relative to
tetrapods? Paleontology 28: 293-309.
Schultze H. P. 1977a. — The origin of the retra-
pod limb within the rhipidistian fishes:
541-544, in Hechr M* K., Goody P. C. &
Hecht B. C. (eds), Major Patterns in Venebrate
Evolution. Plénum Press, New York and London.
Proofi and reprints
Proots will bc sent to the first aurhor for correction
and must bc returned within eight days by express
mail. Authors will receive twenty-five ofiFprints free
of charge; further offprints can be ordered on a
form supplied with the proofs.
GEODIVERSITAS • 1999 • 21 (4)
771
Conception graphique
Isabel Gautray
Mise en page
Noémie de la Selle
Packaging Éditorial
Achevé d’imprimer
sur les presses de l’Imprimerie F. Paillart
80100 Abbeville
Décembre 1999
N° d’impression : 10973
Printed on acid-free paper
Imprimé sur papier non acide
Date de distribution du fasicule 3, 1999 : 28 septembre 1999
Couverture : Alternances marnes-calcaires du Lias du Bassin Lombard (Alpes Méridionales)
Coupe des gorges de la Breggia (Suisse)
Photographie J. F. Deconinck (Université de Lille I)
1999 • 21 (4) suite
Indexed in
GeoRef (Online Database for Bibliography and
Index of Geology), Biological Abstracts, ASFA
(Aquatic Sciences and Fisheries Abstract), Pascal,
Zoological Record
geodiversitas
http://www.mnhn.fr/publication/
Kiessling W., Scasso R., Zeiss A., Riccardi A. C. & Médina F
687 • Combined radiolarian-ammonite stratigraphy for the Late Jun
implications for radiolarian stratigraphy
Mekik F. A., Ling H. Y., Ôzkan-Altiner S. & Altiner D.
71S • Preliminary radiolarian biostratigraphy across the jurassic-Cretaceous boundary from
Turkey
r
Takahashi O.
739 • Late Cretaceous (late Campanian-early Maastrichtian) radiolarian biogeography; a review
V. :
Takemura A., Morimoto T., Aita Y., Horl R. S., Higuchi Y.,
Spôrli B. K., Campbell H. )., Kodama K. & Sakai T.
751 • Permian Albaillellaria (Radiolaria) from a limestone lens at the Arrow Rocks in the Waipapa Terrane
(Northland, New Zealand)
geodiversitas
http://www.mnhn.fr/publication/
InterRad VIII, Paris/Bierville 8-13 septembre 1997
edited by Patrick de Wever & Jean-Pierre Caulet
De Wever R & Caulet J.-P.
SOI • Introduction
Aita Y. & Bragin N. Yu.
503 • Non-Tethyan Triassic Radiolaria from New Zealand and northeastern Siberia
r ^
Bak M. & Bak K.
S27 • Corrélation of the early Albian-late Turonian radiolarian biozonation with planktonic and
agglutinated foraminifera zonations in the Pieniny Klippen Belt (Polish Carpathians)
Bragin N. Yu. & Krylov K. A.
539 • Early Norian Radiolaria from Cyprus
Bragina L. G.
571 • Cuboctostylus n. gen., a new Late Cretaceous spicule-bearing spumellarian Radiolaria from Southern
Sakhalin (Russia)
Braun A. & Budil P.
581 • A Middie Devonian radiolarian fauna from the Chotec Ümestone (Eifelian) of the Prague Basin
(Barrandian, Czech Republic)
Cortese G. & Bjorktund K. R.
593 • Radiolarians from the cyclic Messinian diatomites of Falconara (Sicily, Italy)
Danelian T.
625 • Taxonomie study of Ordovician (LIanvirn-Caradoc) Radiolaria from the Southern Uplands (Scotland,
u.K.) _ r
Ishida K.
637 • Radiolarians as tracers for provenance of gravels in Lower Cretaceous molasse (Outer Zone of SW
Japan)
Kamata Y.
657 • Lower Triassic (Spathian) radiolarians from the Kuzu area (Tochigi Préfecture, central japan)
m ^
Kemkin I. V. & Kemkina R. A.
675 • Radiolarian biostratigraphy of the jurassic-Early Cretaceous chert-clastic sequence in the Taukha
Terrane (South Sikhote-Alin, Russia)
Publication trimestrielle, décembre 1999. ISSN : 1280-9659
N’ d'inscription à la commission paritaire des publications et agences de presse ; 0902 B 0140S
Vente en France
Sales Office (France excluded)
Muséum national d'Histoire naturelle
Universal Book Services
Diffusion Delphine Henry
Dr. W. Backhuys
57, rue Cuvier, 75005 Paris,
P O. Box 321 2300 AH Leiden
France
The Netherlands
Tél. : 33 - 01 40 79 37 00
Tel. : 31 - 71 517 02 08
Fax : 33 01 40 79 38 40
Fax : 31 -71 517 18 56
e-mail : dhenry®mnhn,fr
e-mail : backhuys@backhuys.com